

DBMS
(Data Base Management System)

PRACTICAL
PROGRAMS

Dr. John T Mesia Dhas

Dr. T. S. Shiny Angel

The Palm Series

**Source compiled from authenticated sources

DBMS
(Data Base Management System)

 PRACTICAL

PROGRAMS

Dr. John T Mesia Dhas

Dr. T. S. Shiny Angel

Title: DBMS PRACTICAL PROGRAMS

Author: Dr. John T Mesia Dhas, Dr. T. S. Shiny Angel

Publisher: Self-published by Dr. John T Mesia Dhas

Copyright © 2021 Dr. John T Mesia Dhas

All rights reserved, including the right of reproduction in whole or in part or any

form

Address of Publisher: No-1, MGR Street, Charles Nagar, Pattabiram

Chennai – 600072

India

Email: jtmdhasres@gmail.com

Printer: The Palm

 Mogappair West

 Chennai -600037

 India

ISBN: 978-93-5437-572-9

mailto:jtmdhasres@gmail.com

CONTENTS

Chapter Particulars Page
1 PL/SQL BASICS 1

2 EXAMPLE QUESTIONS 69

3 PRACTICAL EXERCISES 78

1. STUDY OF BASIC SQL COMMANDS 79

2. STUDY OF SPECIAL SQL COMMANDS 90

3. SQL COMMANDS FOR NESTED

QUERIES AND JOIN QUERIES

97

4. SQL COMMANDS FOR VIEWS 106

5. CURSOR 109

6. PROCEDURES 111

7. FUNCTIONS 113

8. CONTROLS 115

9. FRONT END TOOLS 119

10. FORM DESIGN 123

11. TRIGGER 126

1

CHAPTER 1

PL/SQL BASICS

Basic Syntax
In this chapter, we will discuss the Basic Syntax of PL/SQL which is a block-structured language;

this means that the PL/SQL programs are divided and written in logical blocks of code. Each

block consists of three sub-parts −

S.No Sections & Description

1

Declarations

This section starts with the keyword DECLARE. It is an optional section and

defines all variables, cursors, subprograms, and other elements to be used in the

program.

2

Executable Commands

This section is enclosed between the keywords BEGIN and END and it is a

mandatory section. It consists of the executable PL/SQL statements of the

program. It should have at least one executable line of code, which may be just

a NULL command to indicate that nothing should be executed.

3

Exception Handling

This section starts with the keyword EXCEPTION. This optional section

contains exception(s) that handle errors in the program.

Every PL/SQL statement ends with a semicolon (;). PL/SQL blocks can be nested within other

PL/SQL blocks using BEGIN and END. Following is the basic structure of a PL/SQL block −

DECLARE

 <declarations section>

BEGIN

 <executable command(s)>

EXCEPTION

 <exception handling>

END;

The 'Hello World' Example

DECLARE

 message varchar2(20):= 'Hello, World!';

BEGIN

 dbms_output.put_line(message);

END;

/

The end; line signals the end of the PL/SQL block. To run the code from the SQL command line,

you may need to type / at the beginning of the first blank line after the last line of the code. When

the above code is executed at the SQL prompt, it produces the following result −

Hello World

2

PL/SQL procedure successfully completed.

The PL/SQL Identifiers

PL/SQL identifiers are constants, variables, exceptions, procedures, cursors, and reserved words.

The identifiers consist of a letter optionally followed by more letters, numerals, dollar signs,

underscores, and number signs and should not exceed 30 characters.

By default, identifiers are not case-sensitive. So you can use integer or INTEGER to represent

a numeric value. You cannot use a reserved keyword as an identifier.

The PL/SQL Delimiters

A delimiter is a symbol with a special meaning. Following is the list of delimiters in PL/SQL −

Delimiter Description

+, -, *, / Addition, subtraction/negation, multiplication, division

% Attribute indicator

' Character string delimiter

. Component selector

(,) Expression or list delimiter

: Host variable indicator

, Item separator

" Quoted identifier delimiter

= Relational operator

@ Remote access indicator

; Statement terminator

:= Assignment operator

=> Association operator

|| Concatenation operator

** Exponentiation operator

<<, >> Label delimiter (begin and end)

/*, */ Multi-line comment delimiter (begin and end)

-- Single-line comment indicator

.. Range operator

3

<, >, <=, >= Relational operators

<>, '=, ~=, ^= Different versions of NOT EQUAL

The PL/SQL Comments

Program comments are explanatory statements that can be included in the PL/SQL code that you

write and helps anyone reading its source code. All programming languages allow some form of

comments.

The PL/SQL supports single-line and multi-line comments. All characters available inside any

comment are ignored by the PL/SQL compiler. The PL/SQL single-line comments start with the

delimiter -- (double hyphen) and multi-line comments are enclosed by /* and */.

DECLARE

 -- variable declaration

 message varchar2(20):= 'Hello, World!';

BEGIN

 /*

 * PL/SQL executable statement(s)

 */

 dbms_output.put_line(message);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Hello World

PL/SQL procedure successfully completed.

PL/SQL Program Units

A PL/SQL unit is any one of the following −

• PL/SQL block

• Function

• Package

• Package body

• Procedure

• Trigger

• Type

• Type body

Each of these units will be discussed in the following chapters.

PL/SQL - Data Types

n this chapter, we will discuss the Data Types in PL/SQL. The PL/SQL variables, constants and

parameters must have a valid data type, which specifies a storage format, constraints, and a valid

range of values. We will focus on the SCALAR and the LOB data types in this chapter. The other

two data types will be covered in other chapters.

S.No Category & Description

1
Scalar

Single values with no internal components, such as a NUMBER,

4

DATE, or BOOLEAN.

2

Large Object (LOB)

Pointers to large objects that are stored separately from other data items, such as

text, graphic images, video clips, and sound waveforms.

3

Composite

Data items that have internal components that can be accessed individually. For

example, collections and records.

4
Reference

Pointers to other data items.

PL/SQL Scalar Data Types and Subtypes

PL/SQL Scalar Data Types and Subtypes come under the following categories −

S.No Date Type & Description

1
Numeric

Numeric values on which arithmetic operations are performed.

2
Character

Alphanumeric values that represent single characters or strings of characters.

3
Boolean

Logical values on which logical operations are performed.

4
Datetime

Dates and times.

PL/SQL provides subtypes of data types. For example, the data type NUMBER has a subtype

called INTEGER. You can use the subtypes in your PL/SQL program to make the data types

compatible with data types in other programs while embedding the PL/SQL code in another

program, such as a Java program.

PL/SQL Numeric Data Types and Subtypes

Following table lists out the PL/SQL pre-defined numeric data types and their sub-types −

S.No Data Type & Description

1

PLS_INTEGER

Signed integer in range -2,147,483,648 through 2,147,483,647, represented in 32

bits

2

BINARY_INTEGER

Signed integer in range -2,147,483,648 through 2,147,483,647, represented in 32

bits

3
BINARY_FLOAT

Single-precision IEEE 754-format floating-point number

5

4
BINARY_DOUBLE

Double-precision IEEE 754-format floating-point number

5

NUMBER(prec, scale)

Fixed-point or floating-point number with absolute value in range 1E-130 to (but

not including) 1.0E126. A NUMBER variable can also represent 0

6
DEC(prec, scale)

ANSI specific fixed-point type with maximum precision of 38 decimal digits

7
DECIMAL(prec, scale)

IBM specific fixed-point type with maximum precision of 38 decimal digits

8
NUMERIC(pre, secale)

Floating type with maximum precision of 38 decimal digits

9

DOUBLE PRECISION

ANSI specific floating-point type with maximum precision of 126 binary digits

(approximately 38 decimal digits)

10

FLOAT

ANSI and IBM specific floating-point type with maximum precision of 126 binary

digits (approximately 38 decimal digits)

11
INT

ANSI specific integer type with maximum precision of 38 decimal digits

12
INTEGER

ANSI and IBM specific integer type with maximum precision of 38 decimal digits

13
SMALLINT

ANSI and IBM specific integer type with maximum precision of 38 decimal digits

14

REAL

Floating-point type with maximum precision of 63 binary digits (approximately 18

decimal digits)

Following is a valid declaration −

DECLARE

 num1 INTEGER;

 num2 REAL;

 num3 DOUBLE PRECISION;

BEGIN

 null;

END;

/

When the above code is compiled and executed, it produces the following result −

PL/SQL procedure successfully completed

6

PL/SQL Character Data Types and Subtypes

Following is the detail of PL/SQL pre-defined character data types and their sub-types −

S.No Data Type & Description

1
CHAR

Fixed-length character string with maximum size of 32,767 bytes

2
VARCHAR2

Variable-length character string with maximum size of 32,767 bytes

3

RAW

Variable-length binary or byte string with maximum size of 32,767 bytes, not

interpreted by PL/SQL

4
NCHAR

Fixed-length national character string with maximum size of 32,767 bytes

5
NVARCHAR2

Variable-length national character string with maximum size of 32,767 bytes

6
LONG

Variable-length character string with maximum size of 32,760 bytes

7

LONG RAW

Variable-length binary or byte string with maximum size of 32,760 bytes, not

interpreted by PL/SQL

8
ROWID

Physical row identifier, the address of a row in an ordinary table

9
UROWID

Universal row identifier (physical, logical, or foreign row identifier)

PL/SQL Boolean Data Types

The BOOLEAN data type stores logical values that are used in logical operations. The logical

values are the Boolean values TRUE and FALSE and the value NULL.

However, SQL has no data type equivalent to BOOLEAN. Therefore, Boolean values cannot be

used in −

• SQL statements

• Built-in SQL functions (such as TO_CHAR)

• PL/SQL functions invoked from SQL statements

PL/SQL Datetime and Interval Types

The DATE datatype is used to store fixed-length datetimes, which include the time of day in

seconds since midnight. Valid dates range from January 1, 4712 BC to December 31, 9999 AD.

The default date format is set by the Oracle initialization parameter NLS_DATE_FORMAT. For

example, the default might be 'DD-MON-YY', which includes a two-digit number for the day of

the month, an abbreviation of the month name, and the last two digits of the year. For example,

01-OCT-12.

7

Each DATE includes the century, year, month, day, hour, minute, and second. The following table

shows the valid values for each field −

Field Name Valid Datetime Values Valid Interval

Values

YEAR -4712 to 9999 (excluding year 0) Any nonzero integer

MONTH 01 to 12 0 to 11

DAY

01 to 31 (limited by the values of

MONTH and YEAR, according to the

rules of the calendar for the locale)

Any nonzero integer

HOUR 00 to 23 0 to 23

MINUTE 00 to 59 0 to 59

SECOND

00 to 59.9(n), where 9(n) is the precision

of time fractional seconds

0 to 59.9(n), where

9(n) is the precision

of interval fractional

seconds

TIMEZONE_HOUR
-12 to 14 (range accommodates daylight

savings time changes)
Not applicable

TIMEZONE_MINUTE 00 to 59 Not applicable

TIMEZONE_REGION
Found in the dynamic performance view

V$TIMEZONE_NAMES
Not applicable

TIMEZONE_ABBR
Found in the dynamic performance view

V$TIMEZONE_NAMES
Not applicable

PL/SQL Large Object (LOB) Data Types

Large Object (LOB) data types refer to large data items such as text, graphic images, video clips,

and sound waveforms. LOB data types allow efficient, random, piecewise access to this data.

Following are the predefined PL/SQL LOB data types −

Data Type Description Size

BFILE

Used to store large binary objects in

operating system files outside the

database.

System-dependent. Cannot

exceed 4 gigabytes (GB).

BLOB
Used to store large binary objects in the

database.

8 to 128 terabytes (TB)

CLOB
Used to store large blocks of character

data in the database.

8 to 128 TB

8

NCLOB
Used to store large blocks of NCHAR

data in the database.

8 to 128 TB

PL/SQL User-Defined Subtypes

A subtype is a subset of another data type, which is called its base type. A subtype has the same

valid operations as its base type, but only a subset of its valid values.

PL/SQL predefines several subtypes in package STANDARD. For example, PL/SQL predefines

the subtypes CHARACTER and INTEGER as follows −

SUBTYPE CHARACTER IS CHAR;

SUBTYPE INTEGER IS NUMBER(38,0);

You can define and use your own subtypes. The following program illustrates defining and using

a user-defined subtype −

DECLARE

 SUBTYPE name IS char(20);

 SUBTYPE message IS varchar2(100);

 salutation name;

 greetings message;

BEGIN

 salutation := 'Reader ';

 greetings := 'Welcome to the World of PL/SQL';

 dbms_output.put_line('Hello ' || salutation || greetings);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Hello Reader Welcome to the World of PL/SQL

PL/SQL procedure successfully completed.

NULLs in PL/SQL

PL/SQL NULL values represent missing or unknown data and they are not an integer, a

character, or any other specific data type. Note that NULL is not the same as an empty data string

or the null character value '\0'. A null can be assigned but it cannot be equated with anything,

including itself.

PL/SQL - Variables

In this chapter, we will discuss Variables in Pl/SQL. A variable is nothing but a name given to a

storage area that our programs can manipulate. Each variable in PL/SQL has a specific data type,

which determines the size and the layout of the variable's memory; the range of values that can be

stored within that memory and the set of operations that can be applied to the variable.

The name of a PL/SQL variable consists of a letter optionally followed by more letters, numerals,

dollar signs, underscores, and number signs and should not exceed 30 characters. By default,

variable names are not case-sensitive. You cannot use a reserved PL/SQL keyword as a variable

name.

PL/SQL programming language allows to define various types of variables, such as date time data

types, records, collections, etc. which we will cover in subsequent chapters. For this chapter, let us

study only basic variable types.

9

Variable Declaration in PL/SQL

PL/SQL variables must be declared in the declaration section or in a package as a global variable.

When you declare a variable, PL/SQL allocates memory for the variable's value and the storage

location is identified by the variable name.

The syntax for declaring a variable is −

variable_name [CONSTANT] datatype [NOT NULL] [:= | DEFAULT initial_value]

Where, variable_name is a valid identifier in PL/SQL, datatype must be a valid PL/SQL data type

or any user defined data type which we already have discussed in the last chapter. Some valid

variable declarations along with their definition are shown below −

sales number(10, 2);

pi CONSTANT double precision := 3.1415;

name varchar2(25);

address varchar2(100);

When you provide a size, scale or precision limit with the data type, it is called a constrained

declaration. Constrained declarations require less memory than unconstrained declarations. For

example −

sales number(10, 2);

name varchar2(25);

address varchar2(100);

Initializing Variables in PL/SQL

Whenever you declare a variable, PL/SQL assigns it a default value of NULL. If you want to

initialize a variable with a value other than the NULL value, you can do so during the declaration,

using either of the following −

• The DEFAULT keyword

• The assignment operator

For example −

counter binary_integer := 0;

greetings varchar2(20) DEFAULT 'Have a Good Day';

You can also specify that a variable should not have a NULL value using the NOT

NULL constraint. If you use the NOT NULL constraint, you must explicitly assign an initial

value for that variable.

It is a good programming practice to initialize variables properly otherwise, sometimes programs

would produce unexpected results. Try the following example which makes use of various types

of variables −

DECLARE

 a integer := 10;

 b integer := 20;

 c integer;

 f real;

BEGIN

 c := a + b;

 dbms_output.put_line('Value of c: ' || c);

 f := 70.0/3.0;

 dbms_output.put_line('Value of f: ' || f);

END;

10

/

When the above code is executed, it produces the following result −

Value of c: 30

Value of f: 23.333333333333333333

PL/SQL procedure successfully completed.

Variable Scope in PL/SQL

PL/SQL allows the nesting of blocks, i.e., each program block may contain another inner block. If

a variable is declared within an inner block, it is not accessible to the outer block. However, if a

variable is declared and accessible to an outer block, it is also accessible to all nested inner blocks.

There are two types of variable scope −

• Local variables − Variables declared in an inner block and not accessible to outer blocks.

• Global variables − Variables declared in the outermost block or a package.

Following example shows the usage of Local and Global variables in its simple form −

DECLARE

 -- Global variables

 num1 number := 95;

 num2 number := 85;

BEGIN

 dbms_output.put_line('Outer Variable num1: ' || num1);

 dbms_output.put_line('Outer Variable num2: ' || num2);

 DECLARE

 -- Local variables

 num1 number := 195;

 num2 number := 185;

 BEGIN

 dbms_output.put_line('Inner Variable num1: ' || num1);

 dbms_output.put_line('Inner Variable num2: ' || num2);

 END;

END;

/

When the above code is executed, it produces the following result −

Outer Variable num1: 95

Outer Variable num2: 85

Inner Variable num1: 195

Inner Variable num2: 185

PL/SQL procedure successfully completed.

Assigning SQL Query Results to PL/SQL Variables

You can use the SELECT INTO statement of SQL to assign values to PL/SQL variables. For

each item in the SELECT list, there must be a corresponding, type-compatible variable in

the INTO list. The following example illustrates the concept. Let us create a table named

CUSTOMERS −

(For SQL statements, please refer to the SQL tutorial)

CREATE TABLE CUSTOMERS(

 ID INT NOT NULL,

https://www.tutorialspoint.com/sql/index.htm

11

 NAME VARCHAR (20) NOT NULL,

 AGE INT NOT NULL,

 ADDRESS CHAR (25),

 SALARY DECIMAL (18, 2),

 PRIMARY KEY (ID)

);

Table Created

Let us now insert some values in the table −

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (1, 'Ramesh', 32, 'Ahmedabad', 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (2, 'Khilan', 25, 'Delhi', 1500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (3, 'kaushik', 23, 'Kota', 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (4, 'Chaitali', 25, 'Mumbai', 6500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (5, 'Hardik', 27, 'Bhopal', 8500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (6, 'Komal', 22, 'MP', 4500.00);

The following program assigns values from the above table to PL/SQL variables using

the SELECT INTO clause of SQL −

DECLARE

 c_id customers.id%type := 1;

 c_name customers.name%type;

 c_addr customers.address%type;

 c_sal customers.salary%type;

BEGIN

 SELECT name, address, salary INTO c_name, c_addr, c_sal

 FROM customers

 WHERE id = c_id;

 dbms_output.put_line

 ('Customer ' ||c_name || ' from ' || c_addr || ' earns ' || c_sal);

END;

/

When the above code is executed, it produces the following result −

Customer Ramesh from Ahmedabad earns 2000

PL/SQL procedure completed successfully

12

PL/SQL - Constants and Literals

In this chapter, we will discuss constants and literals in PL/SQL. A constant holds a value that

once declared, does not change in the program. A constant declaration specifies its name, data

type, and value, and allocates storage for it. The declaration can also impose the NOT NULL

constraint.

Declaring a Constant

A constant is declared using the CONSTANT keyword. It requires an initial value and does not

allow that value to be changed. For example −

PI CONSTANT NUMBER := 3.141592654;

DECLARE

 -- constant declaration

 pi constant number := 3.141592654;

 -- other declarations

 radius number(5,2);

 dia number(5,2);

 circumference number(7, 2);

 area number (10, 2);

BEGIN

 -- processing

 radius := 9.5;

 dia := radius * 2;

 circumference := 2.0 * pi * radius;

 area := pi * radius * radius;

 -- output

 dbms_output.put_line('Radius: ' || radius);

 dbms_output.put_line('Diameter: ' || dia);

 dbms_output.put_line('Circumference: ' || circumference);

 dbms_output.put_line('Area: ' || area);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Radius: 9.5

Diameter: 19

Circumference: 59.69

Area: 283.53

Pl/SQL procedure successfully completed.

The PL/SQL Literals

A literal is an explicit numeric, character, string, or Boolean value not represented by an identifier.

For example, TRUE, 786, NULL, 'tutorialspoint' are all literals of type Boolean, number, or string.

PL/SQL, literals are case-sensitive. PL/SQL supports the following kinds of literals −

• Numeric Literals

• Character Literals

• String Literals

• BOOLEAN Literals

• Date and Time Literals

The following table provides examples from all these categories of literal values.

13

S.No Literal Type & Example

1

Numeric Literals

050 78 -14 0 +32767

6.6667 0.0 -12.0 3.14159 +7800.00

6E5 1.0E-8 3.14159e0 -1E38 -9.5e-3

2
Character Literals

'A' '%' '9' ' ' 'z' '('

3

String Literals

'Hello, world!'

'Tutorials Point'

'19-NOV-12'

4
BOOLEAN Literals

TRUE, FALSE, and NULL.

5

Date and Time Literals

DATE '1978-12-25';

TIMESTAMP '2012-10-29 12:01:01';

To embed single quotes within a string literal, place two single quotes next to each other as shown

in the following program −

DECLARE

 message varchar2(30):= 'That''s tutorialspoint.com!';

BEGIN

 dbms_output.put_line(message);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

That's tutorialspoint.com!

PL/SQL procedure successfully completed.

PL/SQL - Operators

In this chapter, we will discuss operators in PL/SQL. An operator is a symbol that tells the

compiler to perform specific mathematical or logical manipulation. PL/SQL language is rich in

built-in operators and provides the following types of operators −

• Arithmetic operators

• Relational operators

• Comparison operators

• Logical operators

• String operators

Here, we will understand the arithmetic, relational, comparison and logical operators one by one.

The String operators will be discussed in a later chapter − PL/SQL - Strings.

14

Arithmetic Operators

Following table shows all the arithmetic operators supported by PL/SQL. Let us assume variable

A holds 10 and variable B holds 5, then −

Show Examples

Operator Description Example

+ Adds two operands A + B will give 15

- Subtracts second operand from the first A - B will give 5

* Multiplies both operands A * B will give 50

/ Divides numerator by de-numerator A / B will give 2

** Exponentiation operator, raises one operand to the

power of other

A ** B will give

100000

Relational Operators

Relational operators compare two expressions or values and return a Boolean result. Following

table shows all the relational operators supported by PL/SQL. Let us assume variable A holds 10

and variable B holds 20, then −

Show Examples

Operator Description Example

=
Checks if the values of two operands are equal or not, if yes

then condition becomes true.

(A = B) is not

true.

!=

<>

~=

Checks if the values of two operands are equal or not, if

values are not equal then condition becomes true.

(A != B) is

true.

>
Checks if the value of left operand is greater than the value of

right operand, if yes then condition becomes true.

(A > B) is not

true.

<
Checks if the value of left operand is less than the value of

right operand, if yes then condition becomes true.

(A < B) is

true.

>=
Checks if the value of left operand is greater than or equal to

the value of right operand, if yes then condition becomes true.

(A >= B) is

not true.

<=
Checks if the value of left operand is less than or equal to the

value of right operand, if yes then condition becomes true.

(A <= B) is

true

Comparison Operators

Comparison operators are used for comparing one expression to another. The result is always

either TRUE, FALSE or NULL.

https://www.tutorialspoint.com/plsql/plsql_arithmetic_operators.htm
https://www.tutorialspoint.com/plsql/plsql_relational_operators.htm

15

Show Examples

Operator Description Example

LIKE

The LIKE operator compares a character,

string, or CLOB value to a pattern and

returns TRUE if the value matches the

pattern and FALSE if it does not.

If 'Zara Ali' like 'Z% A_i'

returns a Boolean true,

whereas, 'Nuha Ali' like 'Z%

A_i' returns a Boolean false.

BETWEEN

The BETWEEN operator tests whether a

value lies in a specified range. x

BETWEEN a AND b means that x >= a

and x <= b.

If x = 10 then, x between 5

and 20 returns true, x between

5 and 10 returns true, but x

between 11 and 20 returns

false.

IN

The IN operator tests set membership. x IN

(set) means that x is equal to any member

of set.

If x = 'm' then, x in ('a', 'b', 'c')

returns Boolean false but x in

('m', 'n', 'o') returns Boolean

true.

IS NULL

The IS NULL operator returns the

BOOLEAN value TRUE if its operand is

NULL or FALSE if it is not NULL.

Comparisons involving NULL values

always yield NULL.

If x = 'm', then 'x is null'

returns Boolean false.

Logical Operators

Following table shows the Logical operators supported by PL/SQL. All these operators work on

Boolean operands and produce Boolean results. Let us assume variable A holds true and variable

B holds false, then −

Show Examples

Operator Description Examples

and
Called the logical AND operator. If both the operands are true

then condition becomes true.

(A and B) is

false.

or
Called the logical OR Operator. If any of the two operands is

true then condition becomes true.

(A or B) is

true.

not

Called the logical NOT Operator. Used to reverse the logical

state of its operand. If a condition is true then Logical NOT

operator will make it false.

not (A and B)

is true.

PL/SQL Operator Precedence

Operator precedence determines the grouping of terms in an expression. This affects how an

expression is evaluated. Certain operators have higher precedence than others; for example, the

multiplication operator has higher precedence than the addition operator.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher

precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

https://www.tutorialspoint.com/plsql/plsql_comparison_operators.htm
https://www.tutorialspoint.com/plsql/plsql_logical_operators.htm

16

Here, operators with the highest precedence appear at the top of the table, those with the lowest

appear at the bottom. Within an expression, higher precedence operators will be evaluated first.

The precedence of operators goes as follows: =, <, >, <=, >=, <>, !=, ~=, ^=, IS NULL, LIKE,

BETWEEN, IN.

Show Examples

Operator Operation

** exponentiation

+, - identity, negation

*, / multiplication, division

+, -, || addition, subtraction, concatenation

comparison

NOT logical negation

AND conjunction

OR inclusion

PL/SQL - Conditions

In this chapter, we will discuss conditions in PL/SQL. Decision-making structures require that the

programmer specify one or more conditions to be evaluated or tested by the program, along with a

statement or statements to be executed if the condition is determined to be true, and optionally,

other statements to be executed if the condition is determined to be false.

Following is the general form of a typical conditional (i.e., decision making) structure found in

most of the programming languages −

PL/SQL programming language provides following types of decision-making statements. Click

the following links to check their detail.

S.No Statement & Description

1

IF - THEN statement

The IF statement associates a condition with a sequence of statements enclosed

by the keywords THEN and END IF. If the condition is true, the statements get

executed and if the condition is false or NULL then the IF statement does nothing.

2

IF-THEN-ELSE statement

IF statement adds the keyword ELSE followed by an alternative sequence of

statement. If the condition is false or NULL, then only the alternative sequence of

statements get executed. It ensures that either of the sequence of statements is

executed.

3
IF-THEN-ELSIF statement

It allows you to choose between several alternatives.

https://www.tutorialspoint.com/plsql/plsql_operators_precedence.htm
https://www.tutorialspoint.com/plsql/plsql_if_then.htm
https://www.tutorialspoint.com/plsql/plsql_if_then_else.htm
https://www.tutorialspoint.com/plsql/plsql_if_then_elsif.htm

17

4

Case statement

Like the IF statement, the CASE statement selects one sequence of statements to

execute.

However, to select the sequence, the CASE statement uses a selector rather than

multiple Boolean expressions. A selector is an expression whose value is used to

select one of several alternatives.

5

Searched CASE statement

The searched CASE statement has no selector, and it's WHEN clauses contain

search conditions that yield Boolean values.

6

nested IF-THEN-ELSE

You can use one IF-THEN or IF-THEN-ELSIF statement inside another IF-

THEN or IF-THEN-ELSIF statement(s).

PL/SQL - Loops

In this chapter, we will discuss Loops in PL/SQL. There may be a situation when you need to

execute a block of code several number of times. In general, statements are executed sequentially:

The first statement in a function is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated

execution paths.

A loop statement allows us to execute a statement or group of statements multiple times and

following is the general form of a loop statement in most of the programming languages −

PL/SQL provides the following types of loop to handle the looping requirements. Click the

following links to check their detail.

S.No Loop Type & Description

1
PL/SQL Basic LOOP

In this loop structure, sequence of statements is enclosed between the LOOP and

https://www.tutorialspoint.com/plsql/plsql_case_statement.htm
https://www.tutorialspoint.com/plsql/plsql_searched_case.htm
https://www.tutorialspoint.com/plsql/plsql_nested_if.htm
https://www.tutorialspoint.com/plsql/plsql_basic_loop.htm

18

the END LOOP statements. At each iteration, the sequence of statements is

executed and then control resumes at the top of the loop.

2

PL/SQL WHILE LOOP

Repeats a statement or group of statements while a given condition is true. It tests

the condition before executing the loop body.

3

PL/SQL FOR LOOP

Execute a sequence of statements multiple times and abbreviates the code that

manages the loop variable.

4
Nested loops in PL/SQL

You can use one or more loop inside any another basic loop, while, or for loop.

Labeling a PL/SQL Loop

PL/SQL loops can be labeled. The label should be enclosed by double angle brackets (<< and >>)

and appear at the beginning of the LOOP statement. The label name can also appear at the end of

the LOOP statement. You may use the label in the EXIT statement to exit from the loop.

The following program illustrates the concept −

DECLARE

 i number(1);

 j number(1);

BEGIN

 << outer_loop >>

 FOR i IN 1..3 LOOP

 << inner_loop >>

 FOR j IN 1..3 LOOP

 dbms_output.put_line('i is: '|| i || ' and j is: ' || j);

 END loop inner_loop;

 END loop outer_loop;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

i is: 1 and j is: 1

i is: 1 and j is: 2

i is: 1 and j is: 3

i is: 2 and j is: 1

i is: 2 and j is: 2

i is: 2 and j is: 3

i is: 3 and j is: 1

i is: 3 and j is: 2

i is: 3 and j is: 3

PL/SQL procedure successfully completed.

The Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves a

scope, all automatic objects that were created in that scope are destroyed.

https://www.tutorialspoint.com/plsql/plsql_while_loop.htm
https://www.tutorialspoint.com/plsql/plsql_for_loop.htm
https://www.tutorialspoint.com/plsql/plsql_nested_loops.htm

19

PL/SQL supports the following control statements. Labeling loops also help in taking the control

outside a loop. Click the following links to check their details.

S.No Control Statement & Description

1

EXIT statement

The Exit statement completes the loop and control passes to the statement

immediately after the END LOOP.

2

CONTINUE statement

Causes the loop to skip the remainder of its body and immediately retest its

condition prior to reiterating.

3

GOTO statement

Transfers control to the labeled statement. Though it is not advised to use the

GOTO statement in your program.

PL/SQL – Strings

The string in PL/SQL is actually a sequence of characters with an optional size specification. The

characters could be numeric, letters, blank, special characters or a combination of all. PL/SQL

offers three kinds of strings −

• Fixed-length strings − In such strings, programmers specify the length while declaring the

string. The string is right-padded with spaces to the length so specified.

• Variable-length strings − In such strings, a maximum length up to 32,767, for the string is

specified and no padding takes place.

• Character large objects (CLOBs) − These are variable-length strings that can be up to

128 terabytes.

PL/SQL strings could be either variables or literals. A string literal is enclosed within quotation

marks. For example,

'This is a string literal.' Or 'hello world'

To include a single quote inside a string literal, you need to type two single quotes next to one

another. For example,

'this isn''t what it looks like'

Declaring String Variables

Oracle database provides numerous string datatypes, such as CHAR, NCHAR, VARCHAR2,

NVARCHAR2, CLOB, and NCLOB. The datatypes prefixed with an 'N' are 'national character

set' datatypes, that store Unicode character data.

If you need to declare a variable-length string, you must provide the maximum length of that

string. For example, the VARCHAR2 data type. The following example illustrates declaring and

using some string variables −

DECLARE

 name varchar2(20);

 company varchar2(30);

 introduction clob;

 choice char(1);

BEGIN

 name := 'John Smith';

https://www.tutorialspoint.com/plsql/plsql_exit_statement.htm
https://www.tutorialspoint.com/plsql/plsql_continue_statement.htm
https://www.tutorialspoint.com/plsql/plsql_goto_statement.htm

20

 company := 'Infotech';

 introduction := ' Hello! I''m John Smith from Infotech.';

 choice := 'y';

 IF choice = 'y' THEN

 dbms_output.put_line(name);

 dbms_output.put_line(company);

 dbms_output.put_line(introduction);

 END IF;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

John Smith

Infotech

Hello! I'm John Smith from Infotech.

PL/SQL procedure successfully completed

To declare a fixed-length string, use the CHAR datatype. Here you do not have to specify a

maximum length for a fixed-length variable. If you leave off the length constraint, Oracle

Database automatically uses a maximum length required. The following two declarations are

identical −

red_flag CHAR(1) := 'Y';

 red_flag CHAR := 'Y';

PL/SQL String Functions and Operators

PL/SQL offers the concatenation operator (||) for joining two strings. The following table provides

the string functions provided by PL/SQL −

S.No Function & Purpose

1
ASCII(x);

Returns the ASCII value of the character x.

2
CHR(x);

Returns the character with the ASCII value of x.

3
CONCAT(x, y);

Concatenates the strings x and y and returns the appended string.

4
INITCAP(x);

Converts the initial letter of each word in x to uppercase and returns that string.

5
INSTR(x, find_string [, start] [, occurrence]);

Searches for find_string in x and returns the position at which it occurs.

6
INSTRB(x);

Returns the location of a string within another string, but returns the value in bytes.

7 LENGTH(x);

21

Returns the number of characters in x.

8
LENGTHB(x);

Returns the length of a character string in bytes for single byte character set.

9
LOWER(x);

Converts the letters in x to lowercase and returns that string.

10

LPAD(x, width [, pad_string]) ;

Pads x with spaces to the left, to bring the total length of the string up to width

characters.

11
LTRIM(x [, trim_string]);

Trims characters from the left of x.

12

NANVL(x, value);

Returns value if x matches the NaN special value (not a number), otherwise x is

returned.

13

NLS_INITCAP(x);

Same as the INITCAP function except that it can use a different sort method as

specified by NLSSORT.

14

NLS_LOWER(x) ;

Same as the LOWER function except that it can use a different sort method as

specified by NLSSORT.

15

NLS_UPPER(x);

Same as the UPPER function except that it can use a different sort method as

specified by NLSSORT.

16

NLSSORT(x);

Changes the method of sorting the characters. Must be specified before any NLS

function; otherwise, the default sort will be used.

17
NVL(x, value);

Returns value if x is null; otherwise, x is returned.

18
NVL2(x, value1, value2);

Returns value1 if x is not null; if x is null, value2 is returned.

19
REPLACE(x, search_string, replace_string);

Searches x for search_string and replaces it with replace_string.

20
RPAD(x, width [, pad_string]);

Pads x to the right.

21
RTRIM(x [, trim_string]);

Trims x from the right.

22

22
SOUNDEX(x) ;

Returns a string containing the phonetic representation of x.

23

SUBSTR(x, start [, length]);

Returns a substring of x that begins at the position specified by start. An optional

length for the substring may be supplied.

24

SUBSTRB(x);

Same as SUBSTR except that the parameters are expressed in bytes instead of

characters for the single-byte character systems.

25
TRIM([trim_char FROM) x);

Trims characters from the left and right of x.

26
UPPER(x);

Converts the letters in x to uppercase and returns that string.

Let us now work out on a few examples to understand the concept −

Example 1

DECLARE

 greetings varchar2(11) := 'hello world';

BEGIN

 dbms_output.put_line(UPPER(greetings));

 dbms_output.put_line(LOWER(greetings));

 dbms_output.put_line(INITCAP(greetings));

 /* retrieve the first character in the string */

 dbms_output.put_line (SUBSTR (greetings, 1, 1));

 /* retrieve the last character in the string */

 dbms_output.put_line (SUBSTR (greetings, -1, 1));

 /* retrieve five characters,

 starting from the seventh position. */

 dbms_output.put_line (SUBSTR (greetings, 7, 5));

 /* retrieve the remainder of the string,

 starting from the second position. */

 dbms_output.put_line (SUBSTR (greetings, 2));

 /* find the location of the first "e" */

 dbms_output.put_line (INSTR (greetings, 'e'));

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

HELLO WORLD

23

hello world

Hello World

h

d

World

ello World

2

PL/SQL procedure successfully completed.

Example 2

DECLARE

 greetings varchar2(30) := '......Hello World.....';

BEGIN

 dbms_output.put_line(RTRIM(greetings,'.'));

 dbms_output.put_line(LTRIM(greetings, '.'));

 dbms_output.put_line(TRIM('.' from greetings));

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

......Hello World

Hello World.....

Hello World

PL/SQL procedure successfully completed.

PL/SQL - Arrays

In this chapter, we will discuss arrays in PL/SQL. The PL/SQL programming language provides a

data structure called the VARRAY, which can store a fixed-size sequential collection of elements

of the same type. A varray is used to store an ordered collection of data, however it is often better

to think of an array as a collection of variables of the same type.

All varrays consist of contiguous memory locations. The lowest address corresponds to the first

element and the highest address to the last element.

An array is a part of collection type data and it stands for variable-size arrays. We will study other

collection types in a later chapter 'PL/SQL Collections'.

Each element in a varray has an index associated with it. It also has a maximum size that can be

changed dynamically.

Creating a Varray Type

A varray type is created with the CREATE TYPE statement. You must specify the maximum

size and the type of elements stored in the varray.

The basic syntax for creating a VARRAY type at the schema level is −

CREATE OR REPLACE TYPE varray_type_name IS VARRAY(n) of <element_type>

Where,

24

• varray_type_name is a valid attribute name,

• n is the number of elements (maximum) in the varray,

• element_type is the data type of the elements of the array.

Maximum size of a varray can be changed using the ALTER TYPE statement.

For example,

CREATE Or REPLACE TYPE namearray AS VARRAY(3) OF VARCHAR2(10);

/

Type created.

The basic syntax for creating a VARRAY type within a PL/SQL block is −

TYPE varray_type_name IS VARRAY(n) of <element_type>

For example −

TYPE namearray IS VARRAY(5) OF VARCHAR2(10);

Type grades IS VARRAY(5) OF INTEGER;

Let us now work out on a few examples to understand the concept −

Example 1

The following program illustrates the use of varrays −

DECLARE

 type namesarray IS VARRAY(5) OF VARCHAR2(10);

 type grades IS VARRAY(5) OF INTEGER;

 names namesarray;

 marks grades;

 total integer;

BEGIN

 names := namesarray('Kavita', 'Pritam', 'Ayan', 'Rishav', 'Aziz');

 marks:= grades(98, 97, 78, 87, 92);

 total := names.count;

 dbms_output.put_line('Total '|| total || ' Students');

 FOR i in 1 .. total LOOP

 dbms_output.put_line('Student: ' || names(i) || '

 Marks: ' || marks(i));

 END LOOP;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Total 5 Students

Student: Kavita Marks: 98

Student: Pritam Marks: 97

Student: Ayan Marks: 78

Student: Rishav Marks: 87

Student: Aziz Marks: 92

PL/SQL procedure successfully completed.

Please note −

• In Oracle environment, the starting index for varrays is always 1.

25

• You can initialize the varray elements using the constructor method of the varray type,

which has the same name as the varray.

• Varrays are one-dimensional arrays.

• A varray is automatically NULL when it is declared and must be initialized before its

elements can be referenced.

Example 2

Elements of a varray could also be a %ROWTYPE of any database table or %TYPE of any

database table field. The following example illustrates the concept.

We will use the CUSTOMERS table stored in our database as −

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

Following example makes the use of cursor, which you will study in detail in a separate chapter.

DECLARE

 CURSOR c_customers is

 SELECT name FROM customers;

 type c_list is varray (6) of customers.name%type;

 name_list c_list := c_list();

 counter integer :=0;

BEGIN

 FOR n IN c_customers LOOP

 counter := counter + 1;

 name_list.extend;

 name_list(counter) := n.name;

 dbms_output.put_line('Customer('||counter ||'):'||name_list(counter));

 END LOOP;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Customer(1): Ramesh

Customer(2): Khilan

Customer(3): kaushik

Customer(4): Chaitali

Customer(5): Hardik

Customer(6): Komal

PL/SQL procedure successfully completed.

26

PL/SQL - Procedures

In this chapter, we will discuss Procedures in PL/SQL. A subprogram is a program unit/module

that performs a particular task. These subprograms are combined to form larger programs. This is

basically called the 'Modular design'. A subprogram can be invoked by another subprogram or

program which is called the calling program.

A subprogram can be created −

• At the schema level

• Inside a package

• Inside a PL/SQL block

At the schema level, subprogram is a standalone subprogram. It is created with the CREATE

PROCEDURE or the CREATE FUNCTION statement. It is stored in the database and can be

deleted with the DROP PROCEDURE or DROP FUNCTION statement.

A subprogram created inside a package is a packaged subprogram. It is stored in the database

and can be deleted only when the package is deleted with the DROP PACKAGE statement. We

will discuss packages in the chapter 'PL/SQL - Packages'.

PL/SQL subprograms are named PL/SQL blocks that can be invoked with a set of parameters.

PL/SQL provides two kinds of subprograms −

• Functions − These subprograms return a single value; mainly used to compute and return a

value.

• Procedures − These subprograms do not return a value directly; mainly used to perform an

action.

This chapter is going to cover important aspects of a PL/SQL procedure. We will

discuss PL/SQL function in the next chapter.

Parts of a PL/SQL Subprogram

Each PL/SQL subprogram has a name, and may also have a parameter list. Like anonymous

PL/SQL blocks, the named blocks will also have the following three parts −

S.No Parts & Description

1

Declarative Part

It is an optional part. However, the declarative part for a subprogram does not start

with the DECLARE keyword. It contains declarations of types, cursors, constants,

variables, exceptions, and nested subprograms. These items are local to the

subprogram and cease to exist when the subprogram completes execution.

2

Executable Part

This is a mandatory part and contains statements that perform the designated

action.

3
Exception-handling

This is again an optional part. It contains the code that handles run-time errors.

Creating a Procedure

A procedure is created with the CREATE OR REPLACE PROCEDUREstatement. The

simplified syntax for the CREATE OR REPLACE PROCEDURE statement is as follows −

CREATE [OR REPLACE] PROCEDURE procedure_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

{IS | AS}

BEGIN

27

 < procedure_body >

END procedure_name;

Where,

• procedure-name specifies the name of the procedure.

• [OR REPLACE] option allows the modification of an existing procedure.

• The optional parameter list contains name, mode and types of the parameters. IN represents

the value that will be passed from outside and OUT represents the parameter that will be

used to return a value outside of the procedure.

• procedure-body contains the executable part.

• The AS keyword is used instead of the IS keyword for creating a standalone procedure.

Example

The following example creates a simple procedure that displays the string 'Hello World!' on the

screen when executed.

CREATE OR REPLACE PROCEDURE greetings

AS

BEGIN

 dbms_output.put_line('Hello World!');

END;

/

When the above code is executed using the SQL prompt, it will produce the following result −

Procedure created.

Executing a Standalone Procedure

A standalone procedure can be called in two ways −

• Using the EXECUTE keyword

• Calling the name of the procedure from a PL/SQL block

The above procedure named 'greetings' can be called with the EXECUTE keyword as −

EXECUTE greetings;

The above call will display −

Hello World

PL/SQL procedure successfully completed.

The procedure can also be called from another PL/SQL block −

BEGIN

 greetings;

END;

/

The above call will display −

Hello World

PL/SQL procedure successfully completed.

Deleting a Standalone Procedure

A standalone procedure is deleted with the DROP PROCEDURE statement. Syntax for deleting

a procedure is −

28

DROP PROCEDURE procedure-name;

You can drop the greetings procedure by using the following statement −

DROP PROCEDURE greetings;

Parameter Modes in PL/SQL Subprograms

The following table lists out the parameter modes in PL/SQL subprograms −

S.No Parameter Mode & Description

1

IN

An IN parameter lets you pass a value to the subprogram. It is a read-only

parameter. Inside the subprogram, an IN parameter acts like a constant. It cannot

be assigned a value. You can pass a constant, literal, initialized variable, or

expression as an IN parameter. You can also initialize it to a default value;

however, in that case, it is omitted from the subprogram call. It is the default

mode of parameter passing. Parameters are passed by reference.

2

OUT

An OUT parameter returns a value to the calling program. Inside the subprogram,

an OUT parameter acts like a variable. You can change its value and reference the

value after assigning it. The actual parameter must be variable and it is passed

by value.

3

IN OUT

An IN OUT parameter passes an initial value to a subprogram and returns an

updated value to the caller. It can be assigned a value and the value can be read.

The actual parameter corresponding to an IN OUT formal parameter must be a

variable, not a constant or an expression. Formal parameter must be assigned a

value. Actual parameter is passed by value.

IN & OUT Mode Example 1

This program finds the minimum of two values. Here, the procedure takes two numbers using the

IN mode and returns their minimum using the OUT parameters.

DECLARE

 a number;

 b number;

 c number;

PROCEDURE findMin(x IN number, y IN number, z OUT number) IS

BEGIN

 IF x < y THEN

 z:= x;

 ELSE

 z:= y;

 END IF;

END;

BEGIN

 a:= 23;

 b:= 45;

 findMin(a, b, c);

29

 dbms_output.put_line(' Minimum of (23, 45) : ' || c);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Minimum of (23, 45) : 23

PL/SQL procedure successfully completed.

IN & OUT Mode Example 2

This procedure computes the square of value of a passed value. This example shows how we can

use the same parameter to accept a value and then return another result.

DECLARE

 a number;

PROCEDURE squareNum(x IN OUT number) IS

BEGIN

 x := x * x;

END;

BEGIN

 a:= 23;

 squareNum(a);

 dbms_output.put_line(' Square of (23): ' || a);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Square of (23): 529

PL/SQL procedure successfully completed.

Methods for Passing Parameters

Actual parameters can be passed in three ways −

• Positional notation

• Named notation

• Mixed notation

Positional Notation

In positional notation, you can call the procedure as −

findMin(a, b, c, d);

In positional notation, the first actual parameter is substituted for the first formal parameter; the

second actual parameter is substituted for the second formal parameter, and so on. So, a is

substituted for x, b is substituted for y, c is substituted for z and d is substituted for m.

Named Notation

In named notation, the actual parameter is associated with the formal parameter using the arrow

symbol (=>). The procedure call will be like the following −

findMin(x => a, y => b, z => c, m => d);

Mixed Notation

In mixed notation, you can mix both notations in procedure call; however, the positional notation

should precede the named notation.

The following call is legal −

30

findMin(a, b, c, m => d);

However, this is not legal:

findMin(x => a, b, c, d);

PL/SQL - Functions

In this chapter, we will discuss the functions in PL/SQL. A function is same as a procedure except

that it returns a value. Therefore, all the discussions of the previous chapter are true for functions

too.

Creating a Function

A standalone function is created using the CREATE FUNCTION statement. The simplified

syntax for the CREATE OR REPLACE PROCEDURE statement is as follows −

CREATE [OR REPLACE] FUNCTION function_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

RETURN return_datatype

{IS | AS}

BEGIN

 < function_body >

END [function_name];

Where,

• function-name specifies the name of the function.

• [OR REPLACE] option allows the modification of an existing function.

• The optional parameter list contains name, mode and types of the parameters. IN represents

the value that will be passed from outside and OUT represents the parameter that will be

used to return a value outside of the procedure.

• The function must contain a return statement.

• The RETURN clause specifies the data type you are going to return from the function.

• function-body contains the executable part.

• The AS keyword is used instead of the IS keyword for creating a standalone function.

Example

The following example illustrates how to create and call a standalone function. This function

returns the total number of CUSTOMERS in the customers table.

We will use the CUSTOMERS table, which we had created in the PL/SQL Variables chapter −

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

CREATE OR REPLACE FUNCTION totalCustomers

RETURN number IS

 total number(2) := 0;

https://www.tutorialspoint.com/plsql/plsql_variable_types.htm

31

BEGIN

 SELECT count(*) into total

 FROM customers;

 RETURN total;

END;

/

When the above code is executed using the SQL prompt, it will produce the following result −

Function created.

Calling a Function

While creating a function, you give a definition of what the function has to do. To use a function,

you will have to call that function to perform the defined task. When a program calls a function,

the program control is transferred to the called function.

A called function performs the defined task and when its return statement is executed or when

the last end statement is reached, it returns the program control back to the main program.

To call a function, you simply need to pass the required parameters along with the function name

and if the function returns a value, then you can store the returned value. Following program calls

the function totalCustomers from an anonymous block −

DECLARE

 c number(2);

BEGIN

 c := totalCustomers();

 dbms_output.put_line('Total no. of Customers: ' || c);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Total no. of Customers: 6

PL/SQL procedure successfully completed.

Example

The following example demonstrates Declaring, Defining, and Invoking a Simple PL/SQL

Function that computes and returns the maximum of two values.

DECLARE

 a number;

 b number;

 c number;

FUNCTION findMax(x IN number, y IN number)

RETURN number

IS

 z number;

BEGIN

 IF x > y THEN

 z:= x;

 ELSE

 Z:= y;

 END IF;

32

 RETURN z;

END;

BEGIN

 a:= 23;

 b:= 45;

 c := findMax(a, b);

 dbms_output.put_line(' Maximum of (23,45): ' || c);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Maximum of (23,45): 45

PL/SQL procedure successfully completed.

PL/SQL Recursive Functions

We have seen that a program or subprogram may call another subprogram. When a subprogram

calls itself, it is referred to as a recursive call and the process is known as recursion.

To illustrate the concept, let us calculate the factorial of a number. Factorial of a number n is

defined as −

n! = n*(n-1)!

 = n*(n-1)*(n-2)!

 ...

 = n*(n-1)*(n-2)*(n-3)... 1

The following program calculates the factorial of a given number by calling itself recursively −

DECLARE

 num number;

 factorial number;

FUNCTION fact(x number)

RETURN number

IS

 f number;

BEGIN

 IF x=0 THEN

 f := 1;

 ELSE

 f := x * fact(x-1);

 END IF;

RETURN f;

END;

BEGIN

 num:= 6;

 factorial := fact(num);

 dbms_output.put_line(' Factorial '|| num || ' is ' || factorial);

END;

/

33

When the above code is executed at the SQL prompt, it produces the following result −

Factorial 6 is 720

PL/SQL procedure successfully completed.

PL/SQL - Cursors

In this chapter, we will discuss the cursors in PL/SQL. Oracle creates a memory area, known as

the context area, for processing an SQL statement, which contains all the information needed for

processing the statement; for example, the number of rows processed, etc.

A cursor is a pointer to this context area. PL/SQL controls the context area through a cursor. A

cursor holds the rows (one or more) returned by a SQL statement. The set of rows the cursor holds

is referred to as the active set.

You can name a cursor so that it could be referred to in a program to fetch and process the rows

returned by the SQL statement, one at a time. There are two types of cursors −

• Implicit cursors

• Explicit cursors

Implicit Cursors

Implicit cursors are automatically created by Oracle whenever an SQL statement is executed,

when there is no explicit cursor for the statement. Programmers cannot control the implicit cursors

and the information in it.

Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an implicit cursor is

associated with this statement. For INSERT operations, the cursor holds the data that needs to be

inserted. For UPDATE and DELETE operations, the cursor identifies the rows that would be

affected.

In PL/SQL, you can refer to the most recent implicit cursor as the SQL cursor, which always has

attributes such as %FOUND, %ISOPEN, %NOTFOUND, and %ROWCOUNT. The SQL

cursor has additional attributes, %BULK_ROWCOUNT and %BULK_EXCEPTIONS,

designed for use with the FORALL statement. The following table provides the description of the

most used attributes −

S.No Attribute & Description

1

%FOUND

Returns TRUE if an INSERT, UPDATE, or DELETE statement affected one or

more rows or a SELECT INTO statement returned one or more rows. Otherwise, it

returns FALSE.

2

%NOTFOUND

The logical opposite of %FOUND. It returns TRUE if an INSERT, UPDATE, or

DELETE statement affected no rows, or a SELECT INTO statement returned no

rows. Otherwise, it returns FALSE.

3

%ISOPEN

Always returns FALSE for implicit cursors, because Oracle closes the SQL cursor

automatically after executing its associated SQL statement.

4

%ROWCOUNT

Returns the number of rows affected by an INSERT, UPDATE, or DELETE

statement, or returned by a SELECT INTO statement.

34

Any SQL cursor attribute will be accessed as sql%attribute_name as shown below in the

example.

Example

We will be using the CUSTOMERS table we had created and used in the previous chapters.

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

The following program will update the table and increase the salary of each customer by 500 and

use the SQL%ROWCOUNT attribute to determine the number of rows affected −

DECLARE

 total_rows number(2);

BEGIN

 UPDATE customers

 SET salary = salary + 500;

 IF sql%notfound THEN

 dbms_output.put_line('no customers selected');

 ELSIF sql%found THEN

 total_rows := sql%rowcount;

 dbms_output.put_line(total_rows || ' customers selected ');

 END IF;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

6 customers selected

PL/SQL procedure successfully completed.

If you check the records in customers table, you will find that the rows have been updated −

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2500.00 |

| 2 | Khilan | 25 | Delhi | 2000.00 |

| 3 | kaushik | 23 | Kota | 2500.00 |

| 4 | Chaitali | 25 | Mumbai | 7000.00 |

| 5 | Hardik | 27 | Bhopal | 9000.00 |

35

| 6 | Komal | 22 | MP | 5000.00 |

+----+----------+-----+-----------+----------+

Explicit Cursors

Explicit cursors are programmer-defined cursors for gaining more control over the context area.

An explicit cursor should be defined in the declaration section of the PL/SQL Block. It is created

on a SELECT Statement which returns more than one row.

The syntax for creating an explicit cursor is −

CURSOR cursor_name IS select_statement;

Working with an explicit cursor includes the following steps −

• Declaring the cursor for initializing the memory

• Opening the cursor for allocating the memory

• Fetching the cursor for retrieving the data

• Closing the cursor to release the allocated memory

Declaring the Cursor

Declaring the cursor defines the cursor with a name and the associated SELECT statement. For

example −

CURSOR c_customers IS

 SELECT id, name, address FROM customers;

Opening the Cursor

Opening the cursor allocates the memory for the cursor and makes it ready for fetching the rows

returned by the SQL statement into it. For example, we will open the above defined cursor as

follows −

OPEN c_customers;

Fetching the Cursor

Fetching the cursor involves accessing one row at a time. For example, we will fetch rows from

the above-opened cursor as follows −

FETCH c_customers INTO c_id, c_name, c_addr;

Closing the Cursor

Closing the cursor means releasing the allocated memory. For example, we will close the above-

opened cursor as follows −

CLOSE c_customers;

Example

Following is a complete example to illustrate the concepts of explicit cursors &minua;

DECLARE

 c_id customers.id%type;

 c_name customerS.No.ame%type;

 c_addr customers.address%type;

 CURSOR c_customers is

 SELECT id, name, address FROM customers;

BEGIN

 OPEN c_customers;

 LOOP

 FETCH c_customers into c_id, c_name, c_addr;

 EXIT WHEN c_customers%notfound;

36

 dbms_output.put_line(c_id || ' ' || c_name || ' ' || c_addr);

 END LOOP;

 CLOSE c_customers;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

1 Ramesh Ahmedabad

2 Khilan Delhi

3 kaushik Kota

4 Chaitali Mumbai

5 Hardik Bhopal

6 Komal MP

PL/SQL procedure successfully completed.

PL/SQL - Records

In this chapter, we will discuss Records in PL/SQL. A record is a data structure that can hold data

items of different kinds. Records consist of different fields, similar to a row of a database table.

For example, you want to keep track of your books in a library. You might want to track the

following attributes about each book, such as Title, Author, Subject, Book ID. A record

containing a field for each of these items allows treating a BOOK as a logical unit and allows you

to organize and represent its information in a better way.

PL/SQL can handle the following types of records −

• Table-based

• Cursor-based records

• User-defined records

Table-Based Records

The %ROWTYPE attribute enables a programmer to create table-

based and cursorbased records.

The following example illustrates the concept of table-based records. We will be using the

CUSTOMERS table we had created and used in the previous chapters −

DECLARE

 customer_rec customers%rowtype;

BEGIN

 SELECT * into customer_rec

 FROM customers

 WHERE id = 5;

 dbms_output.put_line('Customer ID: ' || customer_rec.id);

 dbms_output.put_line('Customer Name: ' || customer_rec.name);

 dbms_output.put_line('Customer Address: ' || customer_rec.address);

 dbms_output.put_line('Customer Salary: ' || customer_rec.salary);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Customer ID: 5

Customer Name: Hardik

Customer Address: Bhopal

37

Customer Salary: 9000

PL/SQL procedure successfully completed.

Cursor-Based Records

The following example illustrates the concept of cursor-based records. We will be using the

CUSTOMERS table we had created and used in the previous chapters −

DECLARE

 CURSOR customer_cur is

 SELECT id, name, address

 FROM customers;

 customer_rec customer_cur%rowtype;

BEGIN

 OPEN customer_cur;

 LOOP

 FETCH customer_cur into customer_rec;

 EXIT WHEN customer_cur%notfound;

 DBMS_OUTPUT.put_line(customer_rec.id || ' ' || customer_rec.name);

 END LOOP;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

1 Ramesh

2 Khilan

3 kaushik

4 Chaitali

5 Hardik

6 Komal

PL/SQL procedure successfully completed.

User-Defined Records

PL/SQL provides a user-defined record type that allows you to define the different record

structures. These records consist of different fields. Suppose you want to keep track of your books

in a library. You might want to track the following attributes about each book −

• Title

• Author

• Subject

• Book ID

Defining a Record

The record type is defined as −

TYPE

type_name IS RECORD

 (field_name1 datatype1 [NOT NULL] [:= DEFAULT EXPRESSION],

 field_name2 datatype2 [NOT NULL] [:= DEFAULT EXPRESSION],

 ...

 field_nameN datatypeN [NOT NULL] [:= DEFAULT EXPRESSION);

record-name type_name;

38

The Book record is declared in the following way −

DECLARE

TYPE books IS RECORD

(title varchar(50),

 author varchar(50),

 subject varchar(100),

 book_id number);

book1 books;

book2 books;

Accessing Fields

To access any field of a record, we use the dot (.) operator. The member access operator is coded

as a period between the record variable name and the field that we wish to access. Following is an

example to explain the usage of record −

DECLARE

 type books is record

 (title varchar(50),

 author varchar(50),

 subject varchar(100),

 book_id number);

 book1 books;

 book2 books;

BEGIN

 -- Book 1 specification

 book1.title := 'C Programming';

 book1.author := 'Nuha Ali ';

 book1.subject := 'C Programming Tutorial';

 book1.book_id := 6495407;

 -- Book 2 specification

 book2.title := 'Telecom Billing';

 book2.author := 'Zara Ali';

 book2.subject := 'Telecom Billing Tutorial';

 book2.book_id := 6495700;

 -- Print book 1 record

 dbms_output.put_line('Book 1 title : '|| book1.title);

 dbms_output.put_line('Book 1 author : '|| book1.author);

 dbms_output.put_line('Book 1 subject : '|| book1.subject);

 dbms_output.put_line('Book 1 book_id : ' || book1.book_id);

 -- Print book 2 record

 dbms_output.put_line('Book 2 title : '|| book2.title);

 dbms_output.put_line('Book 2 author : '|| book2.author);

 dbms_output.put_line('Book 2 subject : '|| book2.subject);

 dbms_output.put_line('Book 2 book_id : '|| book2.book_id);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

39

Book 1 title : C Programming

Book 1 author : Nuha Ali

Book 1 subject : C Programming Tutorial

Book 1 book_id : 6495407

Book 2 title : Telecom Billing

Book 2 author : Zara Ali

Book 2 subject : Telecom Billing Tutorial

Book 2 book_id : 6495700

PL/SQL procedure successfully completed.

Records as Subprogram Parameters

You can pass a record as a subprogram parameter just as you pass any other variable. You can

also access the record fields in the same way as you accessed in the above example −

DECLARE

 type books is record

 (title varchar(50),

 author varchar(50),

 subject varchar(100),

 book_id number);

 book1 books;

 book2 books;

PROCEDURE printbook (book books) IS

BEGIN

 dbms_output.put_line ('Book title : ' || book.title);

 dbms_output.put_line('Book author : ' || book.author);

 dbms_output.put_line('Book subject : ' || book.subject);

 dbms_output.put_line('Book book_id : ' || book.book_id);

END;

BEGIN

 -- Book 1 specification

 book1.title := 'C Programming';

 book1.author := 'Nuha Ali ';

 book1.subject := 'C Programming Tutorial';

 book1.book_id := 6495407;

 -- Book 2 specification

 book2.title := 'Telecom Billing';

 book2.author := 'Zara Ali';

 book2.subject := 'Telecom Billing Tutorial';

 book2.book_id := 6495700;

 -- Use procedure to print book info

 printbook(book1);

 printbook(book2);

END;

/

40

When the above code is executed at the SQL prompt, it produces the following result −

Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial

Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial

Book book_id : 6495700

PL/SQL procedure successfully completed.

PL/SQL - Exceptions

n this chapter, we will discuss Exceptions in PL/SQL. An exception is an error condition during a

program execution. PL/SQL supports programmers to catch such conditions

using EXCEPTION block in the program and an appropriate action is taken against the error

condition. There are two types of exceptions −

• System-defined exceptions

• User-defined exceptions

Syntax for Exception Handling

The general syntax for exception handling is as follows. Here you can list down as many

exceptions as you can handle. The default exception will be handled using WHEN others

THEN −

DECLARE

 <declarations section>

BEGIN

 <executable command(s)>

EXCEPTION

 <exception handling goes here >

 WHEN exception1 THEN

 exception1-handling-statements

 WHEN exception2 THEN

 exception2-handling-statements

 WHEN exception3 THEN

 exception3-handling-statements

 WHEN others THEN

 exception3-handling-statements

END;

Example

Let us write a code to illustrate the concept. We will be using the CUSTOMERS table we had

created and used in the previous chapters −

DECLARE

 c_id customers.id%type := 8;

 c_name customerS.Name%type;

 c_addr customers.address%type;

BEGIN

 SELECT name, address INTO c_name, c_addr

41

 FROM customers

 WHERE id = c_id;

 DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);

 DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

EXCEPTION

 WHEN no_data_found THEN

 dbms_output.put_line('No such customer!');

 WHEN others THEN

 dbms_output.put_line('Error!');

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

No such customer!

PL/SQL procedure successfully completed.

The above program displays the name and address of a customer whose ID is given. Since there is

no customer with ID value 8 in our database, the program raises the run-time

exception NO_DATA_FOUND, which is captured in the EXCEPTION block.

Raising Exceptions

Exceptions are raised by the database server automatically whenever there is any internal database

error, but exceptions can be raised explicitly by the programmer by using the command RAISE.

Following is the simple syntax for raising an exception −

DECLARE

 exception_name EXCEPTION;

BEGIN

 IF condition THEN

 RAISE exception_name;

 END IF;

EXCEPTION

 WHEN exception_name THEN

 statement;

END;

You can use the above syntax in raising the Oracle standard exception or any user-defined

exception. In the next section, we will give you an example on raising a user-defined exception.

You can raise the Oracle standard exceptions in a similar way.

User-defined Exceptions

PL/SQL allows you to define your own exceptions according to the need of your program. A user-

defined exception must be declared and then raised explicitly, using either a RAISE statement or

the procedure DBMS_STANDARD.RAISE_APPLICATION_ERROR.

The syntax for declaring an exception is −

DECLARE

 my-exception EXCEPTION;

Example

The following example illustrates the concept. This program asks for a customer ID, when the

user enters an invalid ID, the exception invalid_id is raised.

42

DECLARE

 c_id customers.id%type := &cc_id;

 c_name customerS.Name%type;

 c_addr customers.address%type;

 -- user defined exception

 ex_invalid_id EXCEPTION;

BEGIN

 IF c_id <= 0 THEN

 RAISE ex_invalid_id;

 ELSE

 SELECT name, address INTO c_name, c_addr

 FROM customers

 WHERE id = c_id;

 DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);

 DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

 END IF;

EXCEPTION

 WHEN ex_invalid_id THEN

 dbms_output.put_line('ID must be greater than zero!');

 WHEN no_data_found THEN

 dbms_output.put_line('No such customer!');

 WHEN others THEN

 dbms_output.put_line('Error!');

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Enter value for cc_id: -6 (let's enter a value -6)

old 2: c_id customers.id%type := &cc_id;

new 2: c_id customers.id%type := -6;

ID must be greater than zero!

PL/SQL procedure successfully completed.

Pre-defined Exceptions

PL/SQL provides many pre-defined exceptions, which are executed when any database rule is

violated by a program. For example, the predefined exception NO_DATA_FOUND is raised

when a SELECT INTO statement returns no rows. The following table lists few of the important

pre-defined exceptions −

Exception
Oracle

Error
SQLCODE Description

ACCESS_INTO_NULL 06530 -6530
It is raised when a null object is

automatically assigned a value.

CASE_NOT_FOUND 06592 -6592
It is raised when none of the choices

in the WHEN clause of a CASE

43

statement is selected, and there is no

ELSE clause.

COLLECTION_IS_NULL 06531 -6531

It is raised when a program attempts

to apply collection methods other

than EXISTS to an uninitialized

nested table or varray, or the

program attempts to assign values to

the elements of an uninitialized

nested table or varray.

DUP_VAL_ON_INDEX 00001 -1

It is raised when duplicate values are

attempted to be stored in a column

with unique index.

INVALID_CURSOR 01001 -1001

It is raised when attempts are made

to make a cursor operation that is

not allowed, such as closing an

unopened cursor.

INVALID_NUMBER 01722 -1722

It is raised when the conversion of a

character string into a number fails

because the string does not represent

a valid number.

LOGIN_DENIED 01017 -1017

It is raised when a program attempts

to log on to the database with an

invalid username or password.

NO_DATA_FOUND 01403 +100
It is raised when a SELECT INTO

statement returns no rows.

NOT_LOGGED_ON 01012 -1012

It is raised when a database call is

issued without being connected to

the database.

PROGRAM_ERROR 06501 -6501
It is raised when PL/SQL has an

internal problem.

ROWTYPE_MISMATCH 06504 -6504

It is raised when a cursor fetches

value in a variable having

incompatible data type.

SELF_IS_NULL 30625 -30625

It is raised when a member method

is invoked, but the instance of the

object type was not initialized.

STORAGE_ERROR 06500 -6500 It is raised when PL/SQL ran out of

44

memory or memory was corrupted.

TOO_MANY_ROWS 01422 -1422

It is raised when a SELECT INTO

statement returns more than one

row.

VALUE_ERROR 06502 -6502

It is raised when an arithmetic,

conversion, truncation, or

sizeconstraint error occurs.

ZERO_DIVIDE 01476 1476
It is raised when an attempt is made

to divide a number by zero.

PL/SQL - Triggers

In this chapter, we will discuss Triggers in PL/SQL. Triggers are stored programs, which are

automatically executed or fired when some events occur. Triggers are, in fact, written to be

executed in response to any of the following events −

• A database manipulation (DML) statement (DELETE, INSERT, or UPDATE)

• A database definition (DDL) statement (CREATE, ALTER, or DROP).

• A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or

SHUTDOWN).

Triggers can be defined on the table, view, schema, or database with which the event is associated.

Benefits of Triggers

Triggers can be written for the following purposes −

• Generating some derived column values automatically

• Enforcing referential integrity

• Event logging and storing information on table access

• Auditing

• Synchronous replication of tables

• Imposing security authorizations

• Preventing invalid transactions

Creating Triggers

The syntax for creating a trigger is −

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col_name]

ON table_name

[REFERENCING OLD AS o NEW AS n]

[FOR EACH ROW]

WHEN (condition)

DECLARE

 Declaration-statements

BEGIN

 Executable-statements

EXCEPTION

 Exception-handling-statements

END;

45

Where,

• CREATE [OR REPLACE] TRIGGER trigger_name − Creates or replaces an existing

trigger with the trigger_name.

• {BEFORE | AFTER | INSTEAD OF} − This specifies when the trigger will be executed.

The INSTEAD OF clause is used for creating trigger on a view.

• {INSERT [OR] | UPDATE [OR] | DELETE} − This specifies the DML operation.

• [OF col_name] − This specifies the column name that will be updated.

• [ON table_name] − This specifies the name of the table associated with the trigger.

• [REFERENCING OLD AS o NEW AS n] − This allows you to refer new and old values

for various DML statements, such as INSERT, UPDATE, and DELETE.

• [FOR EACH ROW] − This specifies a row-level trigger, i.e., the trigger will be executed

for each row being affected. Otherwise the trigger will execute just once when the SQL

statement is executed, which is called a table level trigger.

• WHEN (condition) − This provides a condition for rows for which the trigger would fire.

This clause is valid only for row-level triggers.

Example

To start with, we will be using the CUSTOMERS table we had created and used in the previous

chapters −

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

The following program creates a row-level trigger for the customers table that would fire for

INSERT or UPDATE or DELETE operations performed on the CUSTOMERS table. This trigger

will display the salary difference between the old values and new values −

CREATE OR REPLACE TRIGGER display_salary_changes

BEFORE DELETE OR INSERT OR UPDATE ON customers

FOR EACH ROW

WHEN (NEW.ID > 0)

DECLARE

 sal_diff number;

BEGIN

 sal_diff := :NEW.salary - :OLD.salary;

 dbms_output.put_line('Old salary: ' || :OLD.salary);

 dbms_output.put_line('New salary: ' || :NEW.salary);

 dbms_output.put_line('Salary difference: ' || sal_diff);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

46

Trigger created.

The following points need to be considered here −

• OLD and NEW references are not available for table-level triggers, rather you can use

them for record-level triggers.

• If you want to query the table in the same trigger, then you should use the AFTER

keyword, because triggers can query the table or change it again only after the initial

changes are applied and the table is back in a consistent state.

• The above trigger has been written in such a way that it will fire before any DELETE or

INSERT or UPDATE operation on the table, but you can write your trigger on a single or

multiple operations, for example BEFORE DELETE, which will fire whenever a record

will be deleted using the DELETE operation on the table.

Triggering a Trigger

Let us perform some DML operations on the CUSTOMERS table. Here is one INSERT statement,

which will create a new record in the table −

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (7, 'Kriti', 22, 'HP', 7500.00);

When a record is created in the CUSTOMERS table, the above create

trigger, display_salary_changes will be fired and it will display the following result −

Old salary:

New salary: 7500

Salary difference:

Because this is a new record, old salary is not available and the above result comes as null. Let us

now perform one more DML operation on the CUSTOMERS table. The UPDATE statement will

update an existing record in the table −

UPDATE customers

SET salary = salary + 500

WHERE id = 2;

When a record is updated in the CUSTOMERS table, the above create

trigger, display_salary_changes will be fired and it will display the following result −

Old salary: 1500

New salary: 2000

Salary difference: 500

PL/SQL - Packages

In this chapter, we will discuss the Packages in PL/SQL. Packages are schema objects that groups

logically related PL/SQL types, variables, and subprograms.

A package will have two mandatory parts −

• Package specification

• Package body or definition

Package Specification

The specification is the interface to the package. It just DECLARES the types, variables,

constants, exceptions, cursors, and subprograms that can be referenced from outside the package.

In other words, it contains all information about the content of the package, but excludes the code

for the subprograms.

All objects placed in the specification are called public objects. Any subprogram not in the

package specification but coded in the package body is called a private object.

47

The following code snippet shows a package specification having a single procedure. You can

have many global variables defined and multiple procedures or functions inside a package.

CREATE PACKAGE cust_sal AS

 PROCEDURE find_sal(c_id customers.id%type);

END cust_sal;

/

When the above code is executed at the SQL prompt, it produces the following result −

Package created.

Package Body

The package body has the codes for various methods declared in the package specification and

other private declarations, which are hidden from the code outside the package.

The CREATE PACKAGE BODY Statement is used for creating the package body. The

following code snippet shows the package body declaration for the cust_sal package created

above. I assumed that we already have CUSTOMERS table created in our database as mentioned

in the PL/SQL - Variables chapter.

CREATE OR REPLACE PACKAGE BODY cust_sal AS

 PROCEDURE find_sal(c_id customers.id%TYPE) IS

 c_sal customers.salary%TYPE;

 BEGIN

 SELECT salary INTO c_sal

 FROM customers

 WHERE id = c_id;

 dbms_output.put_line('Salary: '|| c_sal);

 END find_sal;

END cust_sal;

/

When the above code is executed at the SQL prompt, it produces the following result −

Package body created.

Using the Package Elements

The package elements (variables, procedures or functions) are accessed with the following syntax

−

package_name.element_name;

Consider, we already have created the above package in our database schema, the following

program uses the find_sal method of the cust_salpackage −

DECLARE

 code customers.id%type := &cc_id;

BEGIN

 cust_sal.find_sal(code);

END;

/

When the above code is executed at the SQL prompt, it prompts to enter the customer ID and

when you enter an ID, it displays the corresponding salary as follows −

Enter value for cc_id: 1

https://www.tutorialspoint.com/plsql/plsql_variable_types.htm

48

Salary: 3000

PL/SQL procedure successfully completed.

Example

The following program provides a more complete package. We will use the CUSTOMERS table

stored in our database with the following records −

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 3000.00 |

| 2 | Khilan | 25 | Delhi | 3000.00 |

| 3 | kaushik | 23 | Kota | 3000.00 |

| 4 | Chaitali | 25 | Mumbai | 7500.00 |

| 5 | Hardik | 27 | Bhopal | 9500.00 |

| 6 | Komal | 22 | MP | 5500.00 |

+----+----------+-----+-----------+----------+

The Package Specification

CREATE OR REPLACE PACKAGE c_package AS

 -- Adds a customer

 PROCEDURE addCustomer(c_id customers.id%type,

 c_name customerS.No.ame%type,

 c_age customers.age%type,

 c_addr customers.address%type,

 c_sal customers.salary%type);

 -- Removes a customer

 PROCEDURE delCustomer(c_id customers.id%TYPE);

 --Lists all customers

 PROCEDURE listCustomer;

END c_package;

/

When the above code is executed at the SQL prompt, it creates the above package and displays the

following result −

Package created.

Creating the Package Body

CREATE OR REPLACE PACKAGE BODY c_package AS

 PROCEDURE addCustomer(c_id customers.id%type,

 c_name customerS.No.ame%type,

 c_age customers.age%type,

 c_addr customers.address%type,

 c_sal customers.salary%type)

 IS

 BEGIN

49

 INSERT INTO customers (id,name,age,address,salary)

 VALUES(c_id, c_name, c_age, c_addr, c_sal);

 END addCustomer;

 PROCEDURE delCustomer(c_id customers.id%type) IS

 BEGIN

 DELETE FROM customers

 WHERE id = c_id;

 END delCustomer;

 PROCEDURE listCustomer IS

 CURSOR c_customers is

 SELECT name FROM customers;

 TYPE c_list is TABLE OF customerS.No.ame%type;

 name_list c_list := c_list();

 counter integer :=0;

 BEGIN

 FOR n IN c_customers LOOP

 counter := counter +1;

 name_list.extend;

 name_list(counter) := n.name;

 dbms_output.put_line('Customer(' ||counter|| ')'||name_list(counter));

 END LOOP;

 END listCustomer;

END c_package;

/

The above example makes use of the nested table. We will discuss the concept of nested table in

the next chapter.

When the above code is executed at the SQL prompt, it produces the following result −

Package body created.

Using The Package

The following program uses the methods declared and defined in the package c_package.

DECLARE

 code customers.id%type:= 8;

BEGIN

 c_package.addcustomer(7, 'Rajnish', 25, 'Chennai', 3500);

 c_package.addcustomer(8, 'Subham', 32, 'Delhi', 7500);

 c_package.listcustomer;

 c_package.delcustomer(code);

 c_package.listcustomer;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Customer(1): Ramesh

Customer(2): Khilan

50

Customer(3): kaushik

Customer(4): Chaitali

Customer(5): Hardik

Customer(6): Komal

Customer(7): Rajnish

Customer(8): Subham

Customer(1): Ramesh

Customer(2): Khilan

Customer(3): kaushik

Customer(4): Chaitali

Customer(5): Hardik

Customer(6): Komal

Customer(7): Rajnish

PL/SQL procedure successfully completed

PL/SQL - Collections

In this chapter, we will discuss the Collections in PL/SQL. A collection is an ordered group of

elements having the same data type. Each element is identified by a unique subscript that

represents its position in the collection.

PL/SQL provides three collection types −

• Index-by tables or Associative array

• Nested table

• Variable-size array or Varray

Oracle documentation provides the following characteristics for each type of collections −

Collection

Type

Number of

Elements

Subscript

Type

Dense or

Sparse

Where

Created

Can Be

Object Type

Attribute

Associative

array (or index-

by table)

Unbounded
String or

integer
Either

Only in

PL/SQL

block

No

Nested table Unbounded Integer

Starts

dense, can

become

sparse

Either in

PL/SQL

block or at

schema level

Yes

Variablesize

array (Varray)
Bounded Integer

Always

dense

Either in

PL/SQL

block or at

schema level

Yes

We have already discussed varray in the chapter 'PL/SQL arrays'. In this chapter, we will discuss

the PL/SQL tables.

Both types of PL/SQL tables, i.e., the index-by tables and the nested tables have the same

structure and their rows are accessed using the subscript notation. However, these two types of

tables differ in one aspect; the nested tables can be stored in a database column and the index-by

tables cannot.

51

Index-By Table

An index-by table (also called an associative array) is a set of key-valuepairs. Each key is

unique and is used to locate the corresponding value. The key can be either an integer or a string.

An index-by table is created using the following syntax. Here, we are creating an index-by table

named table_name, the keys of which will be of the subscript_type and associated values will be

of the element_type

TYPE type_name IS TABLE OF element_type [NOT NULL] INDEX BY subscript_type;

table_name type_name;

Example

Following example shows how to create a table to store integer values along with names and later

it prints the same list of names.

DECLARE

 TYPE salary IS TABLE OF NUMBER INDEX BY VARCHAR2(20);

 salary_list salary;

 name VARCHAR2(20);

BEGIN

 -- adding elements to the table

 salary_list('Rajnish') := 62000;

 salary_list('Minakshi') := 75000;

 salary_list('Martin') := 100000;

 salary_list('James') := 78000;

 -- printing the table

 name := salary_list.FIRST;

 WHILE name IS NOT null LOOP

 dbms_output.put_line

 ('Salary of ' || name || ' is ' || TO_CHAR(salary_list(name)));

 name := salary_list.NEXT(name);

 END LOOP;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Salary of James is 78000

Salary of Martin is 100000

Salary of Minakshi is 75000

Salary of Rajnish is 62000

PL/SQL procedure successfully completed.

Example

Elements of an index-by table could also be a %ROWTYPE of any database table or %TYPE of

any database table field. The following example illustrates the concept. We will use

the CUSTOMERS table stored in our database as −

Select * from customers;

+----+----------+-----+-----------+----------+

52

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

DECLARE

 CURSOR c_customers is

 select name from customers;

 TYPE c_list IS TABLE of customers.Name%type INDEX BY binary_integer;

 name_list c_list;

 counter integer :=0;

BEGIN

 FOR n IN c_customers LOOP

 counter := counter +1;

 name_list(counter) := n.name;

 dbms_output.put_line('Customer('||counter||'):'||name_lis t(counter));

 END LOOP;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Customer(1): Ramesh

Customer(2): Khilan

Customer(3): kaushik

Customer(4): Chaitali

Customer(5): Hardik

Customer(6): Komal

PL/SQL procedure successfully completed

Nested Tables

A nested table is like a one-dimensional array with an arbitrary number of elements. However, a

nested table differs from an array in the following aspects −

• An array has a declared number of elements, but a nested table does not. The size of a

nested table can increase dynamically.

• An array is always dense, i.e., it always has consecutive subscripts. A nested array is dense

initially, but it can become sparse when elements are deleted from it.

A nested table is created using the following syntax −

TYPE type_name IS TABLE OF element_type [NOT NULL];

table_name type_name;

This declaration is similar to the declaration of an index-by table, but there is no INDEX

BY clause.

53

A nested table can be stored in a database column. It can further be used for simplifying SQL

operations where you join a single-column table with a larger table. An associative array cannot

be stored in the database.

Example

The following examples illustrate the use of nested table −

DECLARE

 TYPE names_table IS TABLE OF VARCHAR2(10);

 TYPE grades IS TABLE OF INTEGER;

 names names_table;

 marks grades;

 total integer;

BEGIN

 names := names_table('Kavita', 'Pritam', 'Ayan', 'Rishav', 'Aziz');

 marks:= grades(98, 97, 78, 87, 92);

 total := names.count;

 dbms_output.put_line('Total '|| total || ' Students');

 FOR i IN 1 .. total LOOP

 dbms_output.put_line('Student:'||names(i)||', Marks:' || marks(i));

 end loop;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Total 5 Students

Student:Kavita, Marks:98

Student:Pritam, Marks:97

Student:Ayan, Marks:78

Student:Rishav, Marks:87

Student:Aziz, Marks:92

PL/SQL procedure successfully completed.

Example

Elements of a nested table can also be a %ROWTYPE of any database table or %TYPE of any

database table field. The following example illustrates the concept. We will use the

CUSTOMERS table stored in our database as −

Select * from customers;

+----+----------+-----+-----------+----------+

| ID | NAME | AGE | ADDRESS | SALARY |

+----+----------+-----+-----------+----------+

| 1 | Ramesh | 32 | Ahmedabad | 2000.00 |

| 2 | Khilan | 25 | Delhi | 1500.00 |

| 3 | kaushik | 23 | Kota | 2000.00 |

| 4 | Chaitali | 25 | Mumbai | 6500.00 |

| 5 | Hardik | 27 | Bhopal | 8500.00 |

| 6 | Komal | 22 | MP | 4500.00 |

+----+----------+-----+-----------+----------+

DECLARE

54

 CURSOR c_customers is

 SELECT name FROM customers;

 TYPE c_list IS TABLE of customerS.No.ame%type;

 name_list c_list := c_list();

 counter integer :=0;

BEGIN

 FOR n IN c_customers LOOP

 counter := counter +1;

 name_list.extend;

 name_list(counter) := n.name;

 dbms_output.put_line('Customer('||counter||'):'||name_list(counter));

 END LOOP;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Customer(1): Ramesh

Customer(2): Khilan

Customer(3): kaushik

Customer(4): Chaitali

Customer(5): Hardik

Customer(6): Komal

PL/SQL procedure successfully completed.

Collection Methods

PL/SQL provides the built-in collection methods that make collections easier to use. The

following table lists the methods and their purpose −

S.No Method Name & Purpose

1
EXISTS(n)

Returns TRUE if the nth element in a collection exists; otherwise returns FALSE.

2
COUNT

Returns the number of elements that a collection currently contains.

3
LIMIT

Checks the maximum size of a collection.

4

FIRST

Returns the first (smallest) index numbers in a collection that uses the integer

subscripts.

5

LAST

Returns the last (largest) index numbers in a collection that uses the integer

subscripts.

6
PRIOR(n)

Returns the index number that precedes index n in a collection.

55

7
NEXT(n)

Returns the index number that succeeds index n.

8
EXTEND

Appends one null element to a collection.

9
EXTEND(n)

Appends n null elements to a collection.

10
EXTEND(n,i)

Appends n copies of the ith element to a collection.

11
TRIM

Removes one element from the end of a collection.

12
TRIM(n)

Removes n elements from the end of a collection.

13
DELETE

Removes all elements from a collection, setting COUNT to 0.

14

DELETE(n)

Removes the nth element from an associative array with a numeric key or a nested

table. If the associative array has a string key, the element corresponding to the

key value is deleted. If n is null, DELETE(n) does nothing.

15

DELETE(m,n)

Removes all elements in the range m..n from an associative array or nested table.

If m is larger than n or if m or n is null, DELETE(m,n)does nothing.

Collection Exceptions

The following table provides the collection exceptions and when they are raised −

Collection Exception Raised in Situations

COLLECTION_IS_NULL You try to operate on an atomically null collection.

NO_DATA_FOUND
A subscript designates an element that was deleted, or

a nonexistent element of an associative array.

SUBSCRIPT_BEYOND_COUNT A subscript exceeds the number of elements in a

collection.

SUBSCRIPT_OUTSIDE_LIMIT A subscript is outside the allowed range.

VALUE_ERROR

A subscript is null or not convertible to the key type.

This exception might occur if the key is defined as

a PLS_INTEGER range, and the subscript is outside

this range.

56

PL/SQL - Transactions

In this chapter, we will discuss the transactions in PL/SQL. A database transaction is an atomic

unit of work that may consist of one or more related SQL statements. It is called atomic because

the database modifications brought about by the SQL statements that constitute a transaction can

collectively be either committed, i.e., made permanent to the database or rolled back (undone)

from the database.

A successfully executed SQL statement and a committed transaction are not same. Even if an SQL

statement is executed successfully, unless the transaction containing the statement is committed, it

can be rolled back and all changes made by the statement(s) can be undone.

Starting and Ending a Transaction

A transaction has a beginning and an end. A transaction starts when one of the following events

take place −

• The first SQL statement is performed after connecting to the database.

• At each new SQL statement issued after a transaction is completed.

A transaction ends when one of the following events take place −

• A COMMIT or a ROLLBACK statement is issued.

• A DDL statement, such as CREATE TABLE statement, is issued; because in that case a

COMMIT is automatically performed.

• A DCL statement, such as a GRANT statement, is issued; because in that case a COMMIT

is automatically performed.

• User disconnects from the database.

• User exits from SQL*PLUS by issuing the EXIT command, a COMMIT is automatically

performed.

• SQL*Plus terminates abnormally, a ROLLBACK is automatically performed.

• A DML statement fails; in that case a ROLLBACK is automatically performed for undoing

that DML statement.

Committing a Transaction

A transaction is made permanent by issuing the SQL command COMMIT. The general syntax for

the COMMIT command is −

COMMIT;

For example,

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (1, 'Ramesh', 32, 'Ahmedabad', 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (2, 'Khilan', 25, 'Delhi', 1500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (3, 'kaushik', 23, 'Kota', 2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (4, 'Chaitali', 25, 'Mumbai', 6500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (5, 'Hardik', 27, 'Bhopal', 8500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

57

VALUES (6, 'Komal', 22, 'MP', 4500.00);

COMMIT;

Rolling Back Transactions

Changes made to the database without COMMIT could be undone using the ROLLBACK

command.

The general syntax for the ROLLBACK command is −

ROLLBACK [TO SAVEPOINT < savepoint_name>];

When a transaction is aborted due to some unprecedented situation, like system failure, the entire

transaction since a commit is automatically rolled back. If you are not using savepoint, then

simply use the following statement to rollback all the changes −

ROLLBACK;

Savepoints

Savepoints are sort of markers that help in splitting a long transaction into smaller units by setting

some checkpoints. By setting savepoints within a long transaction, you can roll back to a

checkpoint if required. This is done by issuing the SAVEPOINT command.

The general syntax for the SAVEPOINT command is −

SAVEPOINT < savepoint_name >;

For example

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (7, 'Rajnish', 27, 'HP', 9500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)

VALUES (8, 'Riddhi', 21, 'WB', 4500.00);

SAVEPOINT sav1;

UPDATE CUSTOMERS

SET SALARY = SALARY + 1000;

ROLLBACK TO sav1;

UPDATE CUSTOMERS

SET SALARY = SALARY + 1000

WHERE ID = 7;

UPDATE CUSTOMERS

SET SALARY = SALARY + 1000

WHERE ID = 8;

COMMIT;

ROLLBACK TO sav1 − This statement rolls back all the changes up to the point, where you had

marked savepoint sav1.

After that, the new changes that you make will start.

Automatic Transaction Control

To execute a COMMIT automatically whenever an INSERT, UPDATE or DELETE command

is executed, you can set the AUTOCOMMIT environment variable as −

SET AUTOCOMMIT ON;

58

You can turn-off the auto commit mode using the following command −

SET AUTOCOMMIT OFF;

PL/SQL - Date & Time

In this chapter, we will discuss the Date and Time in PL/SQL. There are two classes of date and

time related data types in PL/SQL −

• Datetime data types

• Interval data types

The Datetime data types are −

• DATE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

• TIMESTAMP WITH LOCAL TIME ZONE

The Interval data types are −

• INTERVAL YEAR TO MONTH

• INTERVAL DAY TO SECOND

Field Values for Datetime and Interval Data Types

Both datetime and interval data types consist of fields. The values of these fields determine the

value of the data type. The following table lists the fields and their possible values for datetimes

and intervals.

Field Name Valid Datetime Values Valid Interval Values

YEAR -4712 to 9999 (excluding year 0) Any nonzero integer

MONTH 01 to 12 0 to 11

DAY

01 to 31 (limited by the values of

MONTH and YEAR, according to the

rules of the calendar for the locale)

Any nonzero integer

HOUR 00 to 23 0 to 23

MINUTE 00 to 59 0 to 59

SECOND

00 to 59.9(n), where 9(n) is the

precision of time fractional seconds

The 9(n) portion is not applicable for

DATE.

0 to 59.9(n), where 9(n)

is the precision of

interval fractional

seconds

TIMEZONE_HOUR

-12 to 14 (range accommodates

daylight savings time changes)

Not applicable for DATE or

TIMESTAMP.

Not applicable

TIMEZONE_MINUTE

00 to 59

Not applicable for DATE or

TIMESTAMP.

Not applicable

59

TIMEZONE_REGION
Not applicable for DATE or

TIMESTAMP.
Not applicable

TIMEZONE_ABBR
Not applicable for DATE or

TIMESTAMP.
Not applicable

The Datetime Data Types and Functions

Following are the Datetime data types −

DATE

It stores date and time information in both character and number datatypes. It is made of

information on century, year, month, date, hour, minute, and second. It is specified as −

TIMESTAMP

It is an extension of the DATE data type. It stores the year, month, and day of the DATE datatype,

along with hour, minute, and second values. It is useful for storing precise time values.

TIMESTAMP WITH TIME ZONE

It is a variant of TIMESTAMP that includes a time zone region name or a time zone offset in its

value. The time zone offset is the difference (in hours and minutes) between local time and UTC.

This data type is useful for collecting and evaluating date information across geographic regions.

TIMESTAMP WITH LOCAL TIME ZONE

It is another variant of TIMESTAMP that includes a time zone offset in its value.

Following table provides the Datetime functions (where, x has the datetime value) −

S.No Function Name & Description

1
ADD_MONTHS(x, y);

Adds y months to x.

2
LAST_DAY(x);

Returns the last day of the month.

3
MONTHS_BETWEEN(x, y);

Returns the number of months between x and y.

4
NEXT_DAY(x, day);

Returns the datetime of the next day after x.

5
NEW_TIME;

Returns the time/day value from a time zone specified by the user.

6
ROUND(x [, unit]);

Rounds x.

7
SYSDATE();

Returns the current datetime.

8
TRUNC(x [, unit]);

Truncates x.

Timestamp functions (where, x has a timestamp value) −

60

S.No Function Name & Description

1

CURRENT_TIMESTAMP();

Returns a TIMESTAMP WITH TIME ZONE containing the current session time

along with the session time zone.

2

EXTRACT({ YEAR | MONTH | DAY | HOUR | MINUTE | SECOND } | {

TIMEZONE_HOUR | TIMEZONE_MINUTE } | { TIMEZONE_REGION | }

TIMEZONE_ABBR) FROM x)

Extracts and returns a year, month, day, hour, minute, second, or time zone from x.

3

FROM_TZ(x, time_zone);

Converts the TIMESTAMP x and the time zone specified by time_zone to a

TIMESTAMP WITH TIMEZONE.

4
LOCALTIMESTAMP();

Returns a TIMESTAMP containing the local time in the session time zone.

5

SYSTIMESTAMP();

Returns a TIMESTAMP WITH TIME ZONE containing the current database time

along with the database time zone.

6

SYS_EXTRACT_UTC(x);

Converts the TIMESTAMP WITH TIMEZONE x to a TIMESTAMP containing

the date and time in UTC.

7
TO_TIMESTAMP(x, [format]);

Converts the string x to a TIMESTAMP.

8
TO_TIMESTAMP_TZ(x, [format]);

Converts the string x to a TIMESTAMP WITH TIMEZONE.

Examples

The following code snippets illustrate the use of the above functions −

Example 1

SELECT SYSDATE FROM DUAL;

Output −

08/31/2012 5:25:34 PM

Example 2

SELECT TO_CHAR(CURRENT_DATE, 'DD-MM-YYYY HH:MI:SS') FROM DUAL;

Output −

31-08-2012 05:26:14

Example 3

SELECT ADD_MONTHS(SYSDATE, 5) FROM DUAL;

Output −

61

01/31/2013 5:26:31 PM

Example 4

SELECT LOCALTIMESTAMP FROM DUAL;

Output −

8/31/2012 5:26:55.347000 PM

The Interval Data Types and Functions

Following are the Interval data types −

• IINTERVAL YEAR TO MONTH − It stores a period of time using the YEAR and

MONTH datetime fields.

• INTERVAL DAY TO SECOND − It stores a period of time in terms of days, hours,

minutes, and seconds.

Interval Functions

S.No Function Name & Description

1
NUMTODSINTERVAL(x, interval_unit);

Converts the number x to an INTERVAL DAY TO SECOND.

2
NUMTOYMINTERVAL(x, interval_unit);

Converts the number x to an INTERVAL YEAR TO MONTH.

3
TO_DSINTERVAL(x);

Converts the string x to an INTERVAL DAY TO SECOND.

4
TO_YMINTERVAL(x);

Converts the string x to an INTERVAL YEAR TO MONTH.

PL/SQL - DBMS Output

In this chapter, we will discuss the DBMS Output in PL/SQL. The DBMS_OUTPUT is a built-in

package that enables you to display output, debugging information, and send messages from

PL/SQL blocks, subprograms, packages, and triggers. We have already used this package

throughout our tutorial.

Let us look at a small code snippet that will display all the user tables in the database. Try it in

your database to list down all the table names −

BEGIN

 dbms_output.put_line (user || ' Tables in the database:');

 FOR t IN (SELECT table_name FROM user_tables)

 LOOP

 dbms_output.put_line(t.table_name);

 END LOOP;

END;

/

DBMS_OUTPUT Subprograms

The DBMS_OUTPUT package has the following subprograms −

S.No Subprogram & Purpose

62

1
DBMS_OUTPUT.DISABLE;

Disables message output.

2

DBMS_OUTPUT.ENABLE(buffer_size IN INTEGER DEFAULT 20000);

Enables message output. A NULL value of buffer_size represents unlimited

buffer size.

3

DBMS_OUTPUT.GET_LINE (line OUT VARCHAR2, status OUT

INTEGER);

Retrieves a single line of buffered information.

4

DBMS_OUTPUT.GET_LINES (lines OUT CHARARR, numlines IN OUT

INTEGER);

Retrieves an array of lines from the buffer.

5
DBMS_OUTPUT.NEW_LINE;

Puts an end-of-line marker.

6
DBMS_OUTPUT.PUT(item IN VARCHAR2);

Places a partial line in the buffer.

7
DBMS_OUTPUT.PUT_LINE(item IN VARCHAR2);

Places a line in the buffer.

Example

DECLARE

 lines dbms_output.chararr;

 num_lines number;

BEGIN

 -- enable the buffer with default size 20000

 dbms_output.enable;

 dbms_output.put_line('Hello Reader!');

 dbms_output.put_line('Hope you have enjoyed the tutorials!');

 dbms_output.put_line('Have a great time exploring pl/sql!');

 num_lines := 3;

 dbms_output.get_lines(lines, num_lines);

 FOR i IN 1..num_lines LOOP

 dbms_output.put_line(lines(i));

 END LOOP;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Hello Reader!

Hope you have enjoyed the tutorials!

63

Have a great time exploring pl/sql!

PL/SQL procedure successfully completed.

PL/SQL - Object Oriented

In this chapter, we will discuss Object-Oriented PL/SQL. PL/SQL allows defining an object type,

which helps in designing object-oriented database in Oracle. An object type allows you to create

composite types. Using objects allow you to implement real world objects with specific structure

of data and methods for operating it. Objects have attributes and methods. Attributes are

properties of an object and are used for storing an object's state; and methods are used for

modeling its behavior.

Objects are created using the CREATE [OR REPLACE] TYPE statement. Following is an

example to create a simple address object consisting of few attributes −

CREATE OR REPLACE TYPE address AS OBJECT

(house_no varchar2(10),

 street varchar2(30),

 city varchar2(20),

 state varchar2(10),

 pincode varchar2(10)

);

/

When the above code is executed at the SQL prompt, it produces the following result −

Type created.

Let's create one more object customer where we will wrap attributes and methods together to

have object-oriented feeling −

CREATE OR REPLACE TYPE customer AS OBJECT

(code number(5),

 name varchar2(30),

 contact_no varchar2(12),

 addr address,

 member procedure display

);

/

When the above code is executed at the SQL prompt, it produces the following result −

Type created.

Instantiating an Object

Defining an object type provides a blueprint for the object. To use this object, you need to create

instances of this object. You can access the attributes and methods of the object using the instance

name and the access operator (.)as follows −

DECLARE

 residence address;

BEGIN

 residence := address('103A', 'M.G.Road', 'Jaipur', 'Rajasthan','201301');

 dbms_output.put_line('House No: '|| residence.house_no);

 dbms_output.put_line('Street: '|| residence.street);

 dbms_output.put_line('City: '|| residence.city);

64

 dbms_output.put_line('State: '|| residence.state);

 dbms_output.put_line('Pincode: '|| residence.pincode);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

House No: 103A

Street: M.G.Road

City: Jaipur

State: Rajasthan

Pincode: 201301

PL/SQL procedure successfully completed.

Member Methods

Member methods are used for manipulating the attributes of the object. You provide the

declaration of a member method while declaring the object type. The object body defines the code

for the member methods. The object body is created using the CREATE TYPE BODY statement.

Constructors are functions that return a new object as its value. Every object has a system

defined constructor method. The name of the constructor is same as the object type. For example

−

residence := address('103A', 'M.G.Road', 'Jaipur', 'Rajasthan','201301');

The comparison methods are used for comparing objects. There are two ways to compare objects

−

Map method

The Map method is a function implemented in such a way that its value depends upon the value

of the attributes. For example, for a customer object, if the customer code is same for two

customers, both customers could be the same. So the relationship between these two objects

would depend upon the value of code.

Order method

The Order method implements some internal logic for comparing two objects. For example, for a

rectangle object, a rectangle is bigger than another rectangle if both its sides are bigger.

Using Map method

Let us try to understand the above concepts using the following rectangle object −

CREATE OR REPLACE TYPE rectangle AS OBJECT

(length number,

 width number,

 member function enlarge(inc number) return rectangle,

 member procedure display,

 map member function measure return number

);

/

When the above code is executed at the SQL prompt, it produces the following result −

Type created.

Creating the type body −

CREATE OR REPLACE TYPE BODY rectangle AS

 MEMBER FUNCTION enlarge(inc number) return rectangle IS

65

 BEGIN

 return rectangle(self.length + inc, self.width + inc);

 END enlarge;

 MEMBER PROCEDURE display IS

 BEGIN

 dbms_output.put_line('Length: '|| length);

 dbms_output.put_line('Width: '|| width);

 END display;

 MAP MEMBER FUNCTION measure return number IS

 BEGIN

 return (sqrt(length*length + width*width));

 END measure;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Type body created.

Now using the rectangle object and its member functions −

DECLARE

 r1 rectangle;

 r2 rectangle;

 r3 rectangle;

 inc_factor number := 5;

BEGIN

 r1 := rectangle(3, 4);

 r2 := rectangle(5, 7);

 r3 := r1.enlarge(inc_factor);

 r3.display;

 IF (r1 > r2) THEN -- calling measure function

 r1.display;

 ELSE

 r2.display;

 END IF;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Length: 8

Width: 9

Length: 5

Width: 7

PL/SQL procedure successfully completed.

Using Order method

Now, the same effect could be achieved using an order method. Let us recreate the rectangle

object using an order method −

CREATE OR REPLACE TYPE rectangle AS OBJECT

(length number,

66

 width number,

 member procedure display,

 order member function measure(r rectangle) return number

);

/

When the above code is executed at the SQL prompt, it produces the following result −

Type created.

Creating the type body −

CREATE OR REPLACE TYPE BODY rectangle AS

 MEMBER PROCEDURE display IS

 BEGIN

 dbms_output.put_line('Length: '|| length);

 dbms_output.put_line('Width: '|| width);

 END display;

 ORDER MEMBER FUNCTION measure(r rectangle) return number IS

 BEGIN

 IF(sqrt(self.length*self.length + self.width*self.width)>

 sqrt(r.length*r.length + r.width*r.width)) then

 return(1);

 ELSE

 return(-1);

 END IF;

 END measure;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Type body created.

Using the rectangle object and its member functions −

DECLARE

 r1 rectangle;

 r2 rectangle;

BEGIN

 r1 := rectangle(23, 44);

 r2 := rectangle(15, 17);

 r1.display;

 r2.display;

 IF (r1 > r2) THEN -- calling measure function

 r1.display;

 ELSE

 r2.display;

 END IF;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Length: 23

67

Width: 44

Length: 15

Width: 17

Length: 23

Width: 44

PL/SQL procedure successfully completed.

Inheritance for PL/SQL Objects

PL/SQL allows creating object from the existing base objects. To implement inheritance, the base

objects should be declared as NOT FINAL. The default is FINAL.

The following programs illustrate the inheritance in PL/SQL Objects. Let us create another object

named TableTop, this is inherited from the Rectangle object. For this, we need to create the

base rectangle object −

CREATE OR REPLACE TYPE rectangle AS OBJECT

(length number,

 width number,

 member function enlarge(inc number) return rectangle,

 NOT FINAL member procedure display) NOT FINAL

/

When the above code is executed at the SQL prompt, it produces the following result −

Type created.

Creating the base type body −

CREATE OR REPLACE TYPE BODY rectangle AS

 MEMBER FUNCTION enlarge(inc number) return rectangle IS

 BEGIN

 return rectangle(self.length + inc, self.width + inc);

 END enlarge;

 MEMBER PROCEDURE display IS

 BEGIN

 dbms_output.put_line('Length: '|| length);

 dbms_output.put_line('Width: '|| width);

 END display;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Type body created.

Creating the child object tabletop −

CREATE OR REPLACE TYPE tabletop UNDER rectangle

(

 material varchar2(20),

 OVERRIDING member procedure display

)

/

When the above code is executed at the SQL prompt, it produces the following result −

68

Type created.

Creating the type body for the child object tabletop

CREATE OR REPLACE TYPE BODY tabletop AS

OVERRIDING MEMBER PROCEDURE display IS

BEGIN

 dbms_output.put_line('Length: '|| length);

 dbms_output.put_line('Width: '|| width);

 dbms_output.put_line('Material: '|| material);

END display;

/

When the above code is executed at the SQL prompt, it produces the following result −

Type body created.

Using the tabletop object and its member functions −

DECLARE

 t1 tabletop;

 t2 tabletop;

BEGIN

 t1:= tabletop(20, 10, 'Wood');

 t2 := tabletop(50, 30, 'Steel');

 t1.display;

 t2.display;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Length: 20

Width: 10

Material: Wood

Length: 50

Width: 30

Material: Steel

PL/SQL procedure successfully completed.

Abstract Objects in PL/SQL

The NOT INSTANTIABLE clause allows you to declare an abstract object. You cannot use an

abstract object as it is; you will have to create a subtype or child type of such objects to use its

functionalities.

For example,

CREATE OR REPLACE TYPE rectangle AS OBJECT

(length number,

 width number,

 NOT INSTANTIABLE NOT FINAL MEMBER PROCEDURE display)

69

 NOT INSTANTIABLE NOT FINAL

/

When the above code is executed at the SQL prompt, it produces the following result −

Type created.

70

CHAPTER 2

EXAMPLE QUESTIONS

1. a. Consider the insurance database given below.

PERSON(driver_id, name, address) CAR(regno,

model,year)

ACCIDENT(report_number,accd_date,location)

OWNS(driver_id,regno)

PARTICIPATED(driver_id,regno,report_number,damage_amount)

i. Create the above tables by properly specifying the primary keys and foreign keys and enter

at least five tuples for each relation.

ii. Update the damage amount for the car with specific regno in the accident with report

number 12 to 25000.

iii. Add a new accident to the database.

iv. Find the total number of people who owned cars that were involved in accidents in the

year 2008.

v. Find the number of accidents in which cars belonging to a specific model were involved.

b. Write a PL/SQL to find and display the sum of first n natural numbers.

2. a. Consider the following employee and department tables.

EMPLOYEE(empno, ename, designation, manager, hiredate, salary, commission, deptno)

DEPARTMENT(deptno, dname, location)

i. Create the above tables by properly specifying the primary keys and foreign keys and enter

at least five tuples for each relation.

ii. List the names of employees whose name contain substring ‘LA’.

iii. List the details of employees of salary are greater than or equal to the average salary of

employee table.

iv. Create a view which consists of details of all ‘SALESMAN’.

b. i. Write a PL/SQL to display the empno,job,salary of all employees in employee table.

ii. Write a trigger to ensure that empno in employee table is maintained as primary key.

3. a. Consider the following tables.

SAILOR(sid, sname, rating, age)

BOATS(bid, bname, colour)

RESERVES(sid, bid, day)

i. Create the above tables by properly specifying the primary keys and foreign keys and enter at

71

least five tuples for each relation.

ii. List the sailors in the descending order of their rating.

iii. List the sailors whose youngest sailor for each rating and who can vote.

iv. List the sailors who have reserved for both ‘RED’ and ‘GREEN’ boats.

v. List the details of the oldest sailor for each rating level.

b. Write a PL/SQL to find the factorial of a number.

4. a. Consider the following relations for order processing database application in a company.

CUSTOMER(custno, cname, city)

ORDER(orderno, odate, custno, ord_amt)

ORDER_ITEM(orderno, itemno, quantity)

ITEM(itemno, unitprice)

SHIPMENT(orderno, warehouseno, ship_date)

WAREHOUSE(warehouseno, city)

i. Create the above tables by properly specifying the primary keys and foreign keys and

enter at least five tuples for each relation.

ii. Produce a listing: custname , No_of_orders , Avg_order_amount , where the middle

column is the total number of orders by the customer and the last column is the average

order amount for that customer.

iii. List the orderno for orders that were shipped from all the warehouses that the company

has in a specific city.

iv. Demonstrate the deletion of an item from the ITEM table and demonstrate a method of

handling the rows in the ORDER_ITEM table that contains this particular item.

 Write a PL/SQL to handle ‘no data found’ predefined exception.

ii. Write a PL/SQL to generate Fibonacci series.

5. a. Consider the following employee and department tables.

EMPLOYEE(empno, ename, designation, manager, hiredate, salary, commission, deptno)

DEPARTMENT(deptno, dname, location)

i. Create the above tables by properly specifying the primary keys and foreign keys and enter

at least five tuples for each relation.

ii.. List the different job titles of employee table.

iii. List the details of employees of with minimum salary of employee table.

72

b. Develop an application for inventory control system.

6. a. Consider the following database of student enrollment in courses and books adopted for

that course.

STUDENT(regno, name, major, bdate)

COURSE(courseno, cname, dept) ENROLL(regno,

courseno, sem, marks) BOOK_ADOPTION(courseno,

sem, book_isbn) TEXT(book_isbn,book_title,publisher,

author)

i. Create the above tables by properly specifying the primary keys and foreign keys and

enter at least five tuples for each relation.

ii. Add a new text book to the database and make this book to be adopted by some

department.

iii. Produce a list of text books (includes courseno , book_isbn , book_title) in the

alphabetical order for courses offered by the 'CS' department that use more than two

books.

iv. List any department that has all its books published by a specific publisher.

b. i. Write a PL/SQL to find topper among ‘n’ students.

ii. Write a trigger to avoid the entry of age less than 25.

7. a. Consider the following employee and department tables.

EMPLOYEE(empno, ename, designation, manager, hiredate, salary, commission, deptno)

DEPARTMENT(deptno, dname, location)

i. Create the above tables by properly specifying the primary keys and foreign keys and

enter at least five tuples for each relation.

ii. List the employees of employee table in descending order of their salaries.

iii. List the details of highest paid employee in ‘SALES’ department.

b. Develop an application for hospital management systems.

8. a. The following are maintained by a book dealer.

AUTHOR(author_id, name, city, country)

PUBLISHER(publisher_id, name, city, country)

CATALOG(book_id, title, author_id, publisher_id , category_id, year, price) CATEGORY(category_id,

description)

ORDER_DETAILS(order_no, book_id, quantity)

i. Create the above tables by properly specifying the primary keys and foreign keys and

enter at least five tuples for each relation.

Give the details of the authors who have 2 or more books in the catalog and the price

of the books is greater than the average price of the books in the catalog and the year

of publication is after 2000.

73

ii. Find the author of the book that has maximum sales.

iii. Demonstrate how you increase the price of books published by a specific publisher by

10%.

Write a PL/SQL to find total marks for n students.

ii. Write a trigger to avoid transaction during Monday and Thursday.

9. a. Consider the following tables.

SAILOR(sid, sname, rating, age)

BOATS(bid, bname, colour)

RESERVES(sid, bid, day)

i. Create the above tables by properly specifying the primary keys and foreign keys and

enter at least five tuples for each relation.

ii. List the sailors who have sailed atleast 2 boats on the same day.

iii. List the sailors who have reserved for all the boats.

b. Develop an application for railway reservation system.

10. a. Consider the following database for a banking enterprise.

BRANCH(branch_name, branch_city, assets) ACCOUNT(accno,

branch_name, balance) DEPOSITOR(customer_name, accno)

CUSTOMER(customer_name, customer_street, customer_city)

LOAN(loan_number, branch_name, amount) BORROWER(customer_name,

loan_number)

i. Create the above tables by properly specifying the primary keys and foreign keys and

enter at least five tuples for each relation. (25)

ii. Find all the customers who have at least two accounts at the main branch. (10)

iii. Find all the customers who have an account at all the branches located in a specific

city. (15)

iv. Demonstrate how you delete all account tuples at every branch located in a specific

city. (10)

Write a PL/SQL to handle ‘zero divide’ predefined exception. (20)

ii. Write a PL/SQL to check the given number is Armstrong number or not. (20)

11. a. Consider the following employee and department tables.

74

EMPLOYEE(empno, ename, designation, manager, hiredate, salary, commission, deptno)

DEPARTMENT(deptno, dname, location)

i. Create the above tables by properly specifying the primary keys and foreign keys and

enter at least five tuples for each relation. (25)

ii. List the employees who joined before 1981. (10)

iii. List the total information of employee table along with dname and location of
all employees working under ‘Accounting’ and ‘Research’ in the descending order of deptno. (15)

b. Develop an application for personal information system. (50)

12. b. Consider the following database for a banking enterprise.

CUSTOMER_FIXED_DEPOSIT(cust_id, last_name,mid_name,first_name,

fixed_deposit_no, amount, rate_of_interest)

CUSTOMER_LOAN(loan_no, cust_id, amount) CUSTOMER_DETAILS(cust_id, acc_type

)

i. Create the above tables by properly specifying the primary keys and foreign keys and

enter at least five tuples for each relation. (25)

ii. List customer names of all customer who have taken a loan > 3,00,000. (10)

iii. List customer names of all customer who have the same account type as customer

‘jones simon’. (15)

iv. List customer names of all customer who do not have a fixed deposit. (10)

Write a PL/SQL to handle ‘Too many rows’ predefined exception. (20)

ii. Write a PL/SQL to find factorial of n number. (20)

13. a. Consider the following employee and department tables.

EMPLOYEE(empno, ename, designation, manager, hiredate, salary, commission, deptno)

DEPARTMENT(deptno, dname, location)

i. Create the above tables by properly specifying the primary keys and foreign keys and enter at

least five tuples for each relation. (25)

ii. List the max, min, avg salaries of each department. (10)

iii. List the details of manager who has maximum number of employees working under him.
(15)

b. Develop an application for timetable management system. (50)

75

14. a. Consider the following databases.

CUSTOMER(custno, custname, city, phone)

ITEM(itemno, itemname, itemprice,

quantity) INVOICE(invno, invdate, custno)

INVITEM(invno, itemno, quantity)

i. Create the above tables by properly specifying the primary keys and foreign

keys and enter at least five tuples for each relation. (25)

ii. Display all item name along with the quantity sold. (10)

iii. Display item name and price as single column like “<item> price is <price>” (10)

iv. Display invoices, customer name and item names together (use join). (15)

v. Find the customers who are not from “Chennai” (use set operator). (15) b.Write a PL/SQL to calculate and print employee pay slip using procedure. (25)

15. a. Consider the following employee and department tables.

EMPLOYEE(empno, ename, designation, manager, hiredate, salary, commission,

deptno)

DEPARTMENT(deptno, dname, location)

i. Create the above tables by properly specifying the primary keys and foreign

keys and enter at least five tuples for each relation. (25)

ii. Count the different job titles in employee table. (10)

iii. List the details of employees who are acting as managers to other employees. (15)

b. Develop an application for hotel management system. (50)

16. a. Consider the following database for a banking enterprise.

BRANCH(branch_name, branch_city, assets) ACCOUNT(accno,

branch_name, balance) DEPOSITOR(customer_name, accno)

CUSTOMER(customer_name, customer_street, customer_city)

LOAN(loan_number, branch_name, amount)

BORROWER(customer_name, loan_number)

i. Create the above tables by properly specifying the primary keys and foreign

keys and enter at least five tuples for each relation. (25)

ii. Display all the customers who were depositor and borrower. (10)

iii. Display all the customer name who are only depositor. (10)

iv. Display all branch name whose assets are greater than assets of branches

located in “Coimbatore” city. (15)

76

Write a PL/SQL to handle user defined exception. (20)

ii. Write a PL/SQL to find the sum of the first n natural numbers. (20)

17. a. Consider the employee databases.

EMPLOYEE(empname, street, city)

WORKS(empname, companyname, salary)

COMPANY(companyname, city)

Manages(empname, managername)

i. Create the above tables by properly specifying the primary keys and foreign keys

and enter at least five tuples for each relation. (25)

ii. Find the names of all employees work for ‘First bank corporation’. (10)

iii. Find the names,street addresses and cities of residence of all employees

who work for ‘First bank corporation’ and earn more than 200000 per

annum. (15)

iv. Find the names of all employees in this database who live in the same city

as the companies for which they work. (15)

v. Find the names of all the employees who earn more than every employees

of ‘small bank corporation’. (10)

b. Write a PL/SQL to calculate Electricity bill using function. (25)

18. a. Consider the following employee and department tables.

EMPLOYEE(empno, ename, designation, manager, hiredate, salary, commission,

deptno)

DEPARTMENT(deptno, dname, location)

i. Create the above tables by properly specifying the primary keys and foreign

keys and Enter at least five tuples for each relation. (25)

ii. List the employees who annual salary is between 22000 and 25000 (10)

iii. List the employees names along with their manager names. (10)

iv. List the dept who employees maximum no of ‘CLERK’s. (15)

b.i. Write a procedure to update the salaries by given amount. (20)

ii. Write a trigger to ensure that salary of an employee is always greater than the commission. (20)

19. a. Consider the following company database.

EMPLOYEE(eno, name, dob, doj, designation, basicpay, deptno)

DEPARTMENT(deptno, name)

77

PROJECT(projno, name,

deptno) WORKSFOR(eno,

projno, hours)

i. Create the above tables by properly specifying the primary keys and foreign keys

and enter at least five tuples for each relation. (25)

ii. List the department number and the number of employees in each department. (10)

iii. List the details of employees who have worked in more than three projects on a day. (15)

iv. Develop a view that will keep track of the department number, the number of

employees
in the department and the total basic pay expenditure for each department. (10)

b.i. Write a PL/SQL to handle ‘Too many rows’ predefined exception. (20)

ii. Write a PL/SQL to check whether the given number is Armstrong number or not. (20)

20. a. Consider the following employee and department tables.

EMPLOYEE(empno, ename, designation, manager, hiredate, salary, commission,

deptno)

DEPARTMENT(deptno, dname, location)

i. Create the above tables by properly specifying the primary keys and foreign

keys and enter at least five tuples for each relation. (25)

ii. List the employees whose salary is greater than at least one of the employees of

deptno 30
(10)

iii. List the name, job, salary of employees in the department with the highest average

salary.

iv. List the employees who are working either as manager or analyst with salary

ranging from 2000 and 5000 (10)

b. i. Write a procedure to update the salaries in given department by 2000 (20)

ii. Write a trigger to ensure that no DML operations are allowed on employee table.

 (

20)

78

CHAPTER 3

PRACTICAL EXERCISES

79

EX: NO: 1 STUDY OF BASIC SQL COMMANDS

AIM

To execute and verify the Basic SQL commands.

PROCEDURE

STEP 1: Start

STEP 2: Create the table with its essential attributes.

STEP 3: Insert attribute values into the table

STEP 4: Execute different Commands and extract information from the table.

STEP 5: Stop

SQL COMMANDS

1. COMMAND NAME: CREATE

 COMMAND DESCRIPTION: CREATE command is used to create objects in database.

2. COMMAND NAME: INSERT

 COMMAND DESCRIPTION: INSERT command is used to insert the values to the table.

3. COMMAND NAME: SELECT

 COMMAND DESCRIPTION: SELECT command is used to display the table & table values.

4. COMMAND NAME: ALTER

 COMMAND DESCRIPTION: ALTER command is used to alter the structure of database.

5. COMMAND NAME: DROP

 COMMAND DESCRIPTION: DROP command is used to delete the object from database.

6. COMMAND NAME: TRUNCATE

 COMMAND DESCRIPTION: TRUNCATE command is used to remove all the records in

 the table including the space allocated for the table.

7. COMMAND NAME: COMMENT

 COMMAND DESCRIPTION: COMMENT command is used to add the comments to the table.

8. COMMAND NAME: RENAME

 COMMAND DESCRIPTION: RENAME command is used to rename the objects.

9. COMMAND NAME: UPDATE

 COMMAND DESCRIPTION: UPDATE command is used to update the values

 10. COMMAND NAME: DELETE

 COMMAND DESCRIPTION: DELETE command is used to delete the constraint from the table

 11. COMMAND NAME: GRANT

 COMMAND DESCRIPTION: GRANT command is used to give user’s access privilege to

 database.

 12. COMMAND NAME: REVOKE

 COMMAND DESCRIPTION: REVOKE command is used to withdraw access privilege given with

 the grant.

80

TYPES OF COMMANDS

DDL (DATA DEFINITION LANGUAGE)

❖ CREATE

❖ ALTER

❖ DROP

❖ TRUNCATE

❖ COMMENT

❖ RENAME

DML (DATA MANIPULATION LANGUAGE)

❖ SELECT

❖ INSERT

❖ UPDATE

❖ DELETE

DCL (DATA CONTROL LANGUAGE)

❖ GRANT

❖ REVOKE

81

COMMANDS EXECUTION

CREATION OF TABLE WITHOUT PRIMARY KEY

SQL> create table employee (Employee_name varchar2(10),employee_no number(8),

dept_name varchar2(10),dept_no number (5),date_of_join date);

Table created.

TABLE DESCRIPTION

SQL> desc employee;

 Name Null? Type

 ------------------------------- -------- ------------------------

 EMPLOYEE_NAME VARCHAR2(10)

 EMPLOYEE_NO NUMBER(8)

 DEPT_NAME VARCHAR2(10)

 DEPT_NO NUMBER(5)

 DATE_OF_JOIN DATE

CREATION OF TABLE WITH PRIMARY KEY

--

SQL> create table employee1 (Employee_name varchar2(10),employee_no number(8)

primary key, dept_name varchar2(10), dept_no number (5),date_of_join date);

Table created.

TABLE DESCRIPTION

SQL> desc employee1;

 Name Null? Type

 ------------------------------- ---------- -------

 EMPLOYEE_NAME VARCHAR2(10)

 EMPLOYEE_NO NOT NULL NUMBER(8)

 DEPT_NAME VARCHAR2(10)

 DEPT_NO NUMBER(5)

 DATE_OF_JOIN DATE

INSERTION OF TABLE VALUES

--

SQL> insert into employee1 values ('Vijay',345,'CSE',21,'21-jun-2006');

1 row created.

82

SQL> insert into employee1 values ('Raj',98,'IT',22,'30-sep-2006');

1 row created.

SQL> insert into employee1 values ('Giri',100,'CSE',67,'14-nov-1981');

1 row created.

SQL> insert into employee1

(Employee_name,employee_no,dept_name,dept_no,date_of_join)values('Vishva',128,

'ECE',87,'25-dec-2006');

1 row created.

SQL> insert into employee1 values ('Ravi',124,'ECE',89,'15-jun-2005');

1 row created.

SELECTION OR DISPLAY OF TABLE

--

SQL> select * from employee1;

EMPLOYEE_N EMPLOYEE_NO DEPT_NAME DEPT_NO DATE_OF_J

------------------ -------------------- ----------------- ------------ -----------------------------

Vijay 345 CSE 21 21-JUN-06

Raj 98 IT 22 30-SEP-06

Giri 100 CSE 67 14-NOV-81

Vishva 128 ECE 87 25-DEC-06

Ravi 124 ECE 89 15-JUN-05

UPDATE OF TABLE VALUES

SQL> update employee1 set employee_no=300 where dept_no=67;

1 row updated.

SQL> select * from employee1;

EMPLOYEE_N EMPLOYEE_NO DEPT_NAME DEPT_NO DATE_OF_J

------------------ -------------------- ----------------- ------------ ---------------

Vijay 345 CSE 21 21-JUN-06

Raj 98 IT 22 30-SEP-06

Giri 300 CSE 67 14-NOV-81

83

Vishva 128 ECE 87 25-DEC-06

Ravi 124 ECE 89 15-JUN-05

USING ALTER COMMANDS

SQL> select * from employee;

EMPLOYEE_N EMPLOYEE_NO DEPT_NAME DEPT_NO DATE_OF_J

------------------- --------------------- ----------------- ------------ ---------------

Karthik 98 ECE 35 14-FEB-05

Vijay 100 CSE 98 15-AUG-01

praveen 128 ECE 76 02-OCT-03

SQL> select * from employee1;

EMPLOYEE_N EMPLOYEE_NO DEPT_NAME DEPT_NO DATE_OF_J

------------------- --------------------- ------------------ ------------- ---------------

Raj 98 IT 22 30-SEP-06

Giri 100 CSE 67 14-NOV-81

Vishva 128 ECE 87 25-DEC-06

DROPPING PRIMARY KEY USING ALTER COMMAND

SQL> alter table employee1 drop primary key;

Table altered.

SQL> desc employee1;

 Name Null? Type

 -------------------------- ------ ---------

 EMPLOYEE_NAME VARCHAR2(10)

 EMPLOYEE_NO NUMBER(8)

 DEPT_NAME VARCHAR2(10)

 DEPT_NO NUMBER(5)

 DATE_OF_JOIN DATE

CREATING PRIMARY KEY USING ALTER COMMAND

SQL> alter table employee1 add primary key (employee_no);

Table altered.

SQL> desc employee1;

 Name Null? Type

84

 ------------------------------- -------------- --------------------------

 EMPLOYEE_NAME VARCHAR2(10)

 EMPLOYEE_NO NOT NULL NUMBER(8)

 DEPT_NAME VARCHAR2(10)

 DEPT_NO NUMBER(5)

 DATE_OF_JOIN DATE

SQL> alter table employee add primary key (employee_no);

Table altered.

SQL> desc employee;

 Name Null? Type

 --------------------------------- ------------------- ---------------

 EMPLOYEE_NAME VARCHAR2(10)

 EMPLOYEE_NO NOT NULL NUMBER(8)

 DEPT_NAME VARCHAR2(10)

 DEPT_NO NUMBER(5)

 DATE_OF_JOIN DATE

CREATING FORIEGN KEY USING ALTER COMMAND

--

Note : For creation of foreign key, both the table should possess primary key with same

 attributes. Similarly for dropping employee 1 as well as employee table ,first the

 relationship i.e., primary key has to be removed from both the tables.

SQL> alter table employee1 add foreign key (employee_no) references employee

(employee_no);

Table altered.

SQL> desc employee1;

 Name Null? Type

 ----------------------------------- ------------------ ---------------

 EMPLOYEE_NAME VARCHAR2(10)

 EMPLOYEE_NO NOT NULL NUMBER(8)

 DEPT_NAME VARCHAR2(10)

 DEPT_NO NUMBER(5)

 DATE_OF_JOIN DATE

ADDING & MODIFYING CONSTRAINTS USING ALTER COMMAND

SQL> select * from employee1;

85

EMPLOYEE_N EMPLOYEE_NO DEPT_NAME DEPT_NO DATE_OF_J

-------------------- --------------------- ----------------- ------------ ---------------

Raj 98 IT 22 30-SEP-06

Giri 100 CSE 67 14-NOV-81

Vishva 128 ECE 87 25-DEC-06

ADDING CONSTRAINTS TO TABLE

SQL> alter table employee1 add (salary number);

Table altered.

SQL> select * from employee1;

EMPLOYEE_N EMPLOYEE_NO DEPT_NAME DEPT_NO DATE_OF_J SALARY

------------------- --------------------- ------------------ ------------- --------------- -----------

Raj 98 IT 22 30-SEP-06

Giri 100 CSE 67 14-NOV-81

Vishva 128 ECE 87 25-DEC-06

SQL> update employee1 set salary = 100 where employee_no=98;

1 row updated.

SQL> update employee1 set salary = 90 where employee_no=100;

1 row updated.

SQL> update employee1 set salary = 134 where employee_no=128;

1 row updated.

SQL> select * from employee1;

EMPLOYEE_N EMPLOYEE_NO DEPT_NAME DEPT_NO DATE_OF_J SALARY

---------- ----------- -------------------- --------- --------- -------------- ---------------- -------------

Raj 98 IT 22 30-SEP-06 100

Giri 100 CSE 67 14-NOV-81 90

Vishva 128 ECE 87 25-DEC-06 134

86

MODIFYING THE CHARACTERISTIC OF CONSTRAINTS IN A TABLE

--

Note: Before modifying the character of a column,first set the column values to null.The

 feature of a column can be altered only if all its values become null or empty.

SQL> update employee1 set salary = ''where employee_no=100;

1 row updated.

SQL> update employee1 set salary = ''where employee_no=128;

1 row updated.

SQL> update employee1 set salary =''where employee_no=98;

1 row updated.

SQL> select * from employee1;

EMPLOYEE_N EMPLOYEE_NO DEPT_NAME DEPT_NO DATE_OF_J SALARY

------------------- -------------------- ----------------- -------------- ---------------- -------------

Raj 98 IT 22 30-SEP-06

Giri 100 CSE 67 14-NOV-81

Vishva 128 ECE 87 25-DEC-06

Modifying the column of employee1 table

SQL> alter table employee1 modify (salary varchar2(10));

Table altered.

SQL> select * from employee1;

EMPLOYEE_N EMPLOYEE_NO DEPT_NAME DEPT_NO DATE_OF_J SALARY

------------------- --------------------- ---------------- ------------- ---------------- -------------

-

Raj 98 IT 22 30-SEP-06

Giri 100 CSE 67 14-NOV-81

Vishva 128 ECE 87 25-DEC-06

SQL> update employee1 set salary ='90'where employee_no=100;

1 row updated.

87

SQL> update employee1 set salary ='134' where employee_no=128;

1 row updated.

SQL> update employee1 set salary ='100'where employee_no=98;

1 row updated.

EMPLOYEE_N EMPLOYEE_NO DEPT_NAME DEPT_NO DATE_OF_J SALARY

-------------------- --------------------- ------------------- ------------- ---------------- -----------

Raj 98 IT 22 30-SEP-06 100

Giri 100 CSE 67 14-NOV-81 90

Vishva 128 ECE 87 25-DEC-06 134

Note: Differences (salary varchar2(10)) & (salary number)

(Salary varchar2(10))

SALARY

100

90

134

(salary number)

 SALARY

100

 90

134

ASSIGNING COMMENTS FOR TABLE

--

SQL> comment on table employee1 is 'EMPLOYEE DETAILS';

Comment created.

SQL> select comments from user_tab_comments;

COMMENTS

EMPLOYEE DETAILS

88

ASSIGNING COMMENTS FOR COLUMN

SQL> comment on column employee1.EMPLOYEE_NO is 'EMPLOYEE

REGISTRATION NUMBER';

Comment created.

SQL> select comments from USER_COL_COMMENTS;

COMMENTS

EMPLOYEE REGISTRATION NUMBER

3 rows selected.

DELETION OF TABLE VALUES

--

SQL> select * from employee1;

EMPLOYEE_N EMPLOYEE_NO DEPT_NAME DEPT_NO DATE_OF_J

------------------- --------------------- ------------------ ------------- ----------------

Vijay 345 CSE 21 21-JUN-06

Raj 98 IT 22 30-SEP-06

Giri 100 CSE 67 14-NOV-81

Vishva 128 ECE 87 25-DEC-06

Ravi 124 ECE 89 15-JUN-05

SQL> delete from employee1 where employee_no >344;

1 row deleted.

SQL> select * from employee1;

EMPLOYEE_N EMPLOYEE_NO DEPT_NAME DEPT_NO DATE_OF_J

------------------- ---------------------- ------------------ --------------- ----------------

Raj 98 IT 22 30-SEP-06

Giri 100 CSE 67 14-NOV-81

Vishva 128 ECE 87 25-DEC-06

Ravi 124 ECE 89 15-JUN-05

SQL> delete from employee1 where employee_no =124;

89

1 row deleted.

SQL> select * from employee1;

EMPLOYEE_N EMPLOYEE_NO DEPT_NAME DEPT_NO DATE_OF_J

------------------- --------------------- ------------------ -------------- ----------------

Raj 98 IT 22 30-SEP-06

Giri 100 CSE 67 14-NOV-81

Vishva 128 ECE 87 25-DEC-06

GRANT COMMAND

SQL> grant insert,select,update,delete on employee1 to system;

Grant succeeded.

REVOKE COMMAND

SQL> revoke select,insert on employee1 from system;

Revoke succeeded.

RENAMING TABLE

SQL> Rename employee1 to emp;

Table renamed.

TRUNCATION OF TABLE

SQL> truncate table emp;

Table truncated.

SQL> select * from emp;

no rows selected

DROPPING OF TABLE

SQL> drop table emp;

Table dropped.

RESULT: Thus, the Special SQL commands has been verified and executed

successfully.

90

EX:NO:2 STUDY OF SPECIAL SQL COMMANDS

AIM

To execute and verify the Special SQL commands.

PROCEDURE

STEP 1: Start

STEP 2: Create the table with its essential attributes.

STEP 3: Insert attribute values into the table

STEP 4: Execute different Commands and extract information from the table.

STEP 5: Stop

SQL COMMANDS

1. COMMAND NAME: COMMIT

 COMMAND DESCRIPTION: COMMIT command is used to save the work done.

2. COMMAND NAME: SAVE POINT

 COMMAND DESCRIPTION: SAVE POINT command is used to identify a point in a

 transaction in which it can be restored using Roll back command.

3. COMMAND NAME: ROLLBACK

 COMMAND DESCRIPTION: ROLLBACK command is used to restore database to original

 since last commit.

4. COMMAND NAME: MAX

 COMMAND DESCRIPTION: MAX command is used to find the maximum among the

 entities in a particular attribute.

5. COMMAND NAME: MIN

 COMMAND DESCRIPTION: MIN command is used to find the manimum among the

 entities in a particular attribute.

6. COMMAND NAME: COUNT

 COMMAND DESCRIPTION: COUNT command is used to count the entire entities in a

 particular attribute.

7. COMMAND NAME: SUM

 COMMAND DESCRIPTION: SUM command is used to add all the entities with in the attribute.

8. COMMAND NAME: UNION

 COMMAND DESCRIPTION: UNION command is used to compile all distinct rows and

 display all entities in both rows.

9. COMMAND NAME: UNIONALL

 COMMAND DESCRIPTION: UNIONALL command is used to return all entities in both rows.

 10. COMMAND NAME: INTERSECT

 COMMAND DESCRIPTION: INTERSECT command is used to display only similar entities in

 both rows.

 11. COMMAND NAME: MINUS

 COMMAND DESCRIPTION: MINUS command is used to display only the rows that don’t

 match in both queries.

 12.COMMAND NAME: AVG

 COMMAND DESCRIPTION: AVG command is used to find average of entity in particular

 attribute.

91

TCL (TRANSACTION CONTROL COMMANDS)

❖ COMMIT

❖ SAVEPOINT

❖ ROLLBACK

SET OPERATORS

❖ UNION

❖ UNIONALL

❖ INTERSECT

❖ MINUS

ARITHMETIC OPERATORS

❖ MAX

❖ MIN

❖ COUNT

❖ AVG

❖ SUM

92

COMMANDS EXECUTION

CREATION OF TABLE

SQL> create table employee (Employee_Name varchar2(10),Employee_no number

primary key, Dept_no number,Dept_name varchar2(10));

Table created.

SQL> create table employee1 (Employee_Name varchar2(10),Employee_no number

primary key,Dept_no number,dept_name varchar2(10));

Table created.

DESCRIPTION OF TABLE

SQL> desc employee1;

 Name Null? Type

 ------------------------- ------- -------

 EMPLOYEE_NAME VARCHAR2(10)

 EMPLOYEE_NO NOT NULL NUMBER

 DEPT_NO NUMBER

 DEPT_NAME VARCHAR2(10)

SQL> desc employee;

 Name Null? Type

 --------------------- -------- ------------

 EMPLOYEE_NAME VARCHAR2(10)

 EMPLOYEE_NO NOT NULL NUMBER

 DEPT_NO NUMBER

 DEPT_NAME VARCHAR2(10)

SELECTION OF TABLE VALUES

--

SQL> select * from employee;

EMPLOYEE_N EMPLOYEE_NO DEPT_NO DEPT_NAME

------------------- ---------------------- ------------- -------------------

Ganesh 234 45 CSE

Vijay 877 85 EEE

Vignesh 990 95 BME

SQL> select * from employee1;

93

EMPLOYEE_N EMPLOYEE_NO DEPT_NO DEPT_NAME

------------------- ---------------------- ------------- -------------------

Ganesh 234 45 CSE

Vishnu 476 55 IT

Vikram 985 75 ECE

COMMIT & ROLLBACK COMMAND

SQL> select * from employee;

EMPLOYEE_N EMPLOYEE_NO DEPT_NO DEPT_NAME

------------------- ---------------------- ------------- -------------------

Ganesh 234 45 CSE

Vijay 877 85 EEE

Vignesh 990 95 BME

SQL> commit;

Commit complete.

SQL> delete from employee where employee_no=990;

1 row deleted.

SQL> select * from employee;

EMPLOYEE_N EMPLOYEE_NO DEPT_NO DEPT_NAME

------------------- ---------------------- ------------- -------------------

Ganesh 234 45 CSE

Vijay 877 85 EEE

SQL> rollback;

Rollback complete.

SQL> select * from employee;

EMPLOYEE_N EMPLOYEE_NO DEPT_NO DEPT_NAME

------------------- ---------------------- ------------- -------------------

Ganesh 234 45 CSE

Vijay 877 85 EEE

Vignesh 990 95 BME

SAVEPOINT & ROLLBACK COMMAND

SQL> select * from employee;

EMPLOYEE_N EMPLOYEE_NO DEPT_NO DEPT_NAME

94

------------------- ---------------------- ------------- -------------------

Ganesh 234 45 CSE

Vijay 877 85 EEE

Vignesh 990 95 BME

SQL> savepoint vijay;

Savepoint created.

SQL> update employee set dept_no=75 where employee_no=234;

1 row updated.

SQL> delete from employee where employee_no=990;

1 row deleted.

SQL> select * from employee;

EMPLOYEE_N EMPLOYEE_NO DEPT_NO DEPT_NAME

------------------- ---------------------- ------------- -------------------

Ganesh 234 75 CSE

Vijay 877 85 EEE

SQL> roll back vijay

Rollback complete.

SQL> select * from employee;

EMPLOYEE_N EMPLOYEE_NO DEPT_NO DEPT_NAME

------------------- ---------------------- ------------- -------------------

Ganesh 234 45 CSE

Vijay 877 85 EEE

Vignesh 990 95 BME

ARITHMETIC OPERATORS

SQL> select * from employee;

EMPLOYEE_N EMPLOYEE_NO DEPT_NO DEPT_NAME

------------------- ---------------------- ------------- -------------------

Ganesh 234 45 CSE

Vijay 877 85 EEE

Vignesh 990 95 BME

SQL> select sum(employee_no) from employee;

SUM(EMPLOYEE_NO)

 2101

95

SQL> select avg(employee_no) from employee;

AVG(EMPLOYEE_NO)

 700.33333

SQL> select max(employee_no) from employee;

MAX(EMPLOYEE_NO)

 990

SQL> select min(employee_no) from employee;

MIN(EMPLOYEE_NO)

 234

SQL> select count(employee_no) from employee;

COUNT(EMPLOYEE_NO)

 3

SET OPERATORS

SQL> select * from employee;

EMPLOYEE_N EMPLOYEE_NO DEPT_NO DEPT_NAME

------------------- ---------------------- ------------- -------------------

Ganesh 234 45 CSE

Vijay 877 85 EEE

Vignesh 990 95 ECE

SQL> select * from employee1;

EMPLOYEE_N EMPLOYEE_NO DEPT_NO DEPT_NAME

------------------- ---------------------- ------------- -------------------

Ganesh 234 45 CSE

Vishnu 476 55 IT

Vikram 985 75 ECE

SQL> SQL> select employee_no from employee union select employee_no from

employee1;

96

EMPLOYEE_NO

 234

 476

 877

 985

 990

SQL> select employee_no from employee union all select employee_no from

employee1;

EMPLOYEE_NO

 234

 877

 990

 234

 476

 985

6 rows selected.

SQL> select employee_no from employee intersect select employee_no from

employee1;

EMPLOYEE_NO

 234

SQL> select employee_no from employee minus select employee_no from employee1;

EMPLOYEE_NO

 877

 990

RESULT: Thus, the Special SQL commands has been verified and executed

successfully.

97

EX:NO:3 SQL COMMANDS FOR NESTED QUERIES AND JOIN QUERIES

AIM

To execute and verify the SQL commands using nested queries and Join queries.

PROCEDURE

STEP 1: Start

STEP 2: Create the table with its essential attributes.

STEP 3: Insert attribute values into the table

STEP 4: Execute different Commands and extract information from the table.

STEP 5: Stop

SQL COMMANDS

1. COMMAND NAME: INNER JOIN

 COMMAND DESCRIPTION: INNER JOIN command returns the matching rows from the

 tables that are being joined.

2. COMMAND NAME: LEFT OUTER JOIN

 COMMAND DESCRIPTION: LEFT OUTER JOIN command returns matching rows from

 the tables being joined and also non-matching row from the left table in the result and places

 null values in the attributes that come from the right side table.

3. COMMAND NAME: RIGHT OUTER JOIN

 COMMAND DESCRIPTION: RIGHT OUTER JOIN command returns matching rows from

 the tables being joined and also non-matching row from the right table in the result and places

 null values in the attributes that come from the left side table.

4. COMMAND NAME: NESTED QUERY

 COMMAND DESCRIPTION: NESTED QUERY command have query within another

query.

COMMANDS EXECUTION

CREATION OF TABLE

SQL> create table employee (Employee_Name varchar2(10),Employee_no number

primary key, Dept_no number,Dept_name varchar2(10));

Table created.

SQL> create table employee1 (Employee_Name varchar2(10),Employee_no number

primary key,Dept_no number,dept_name varchar2(10));

Table created.

DESCRIPTION OF TABLE

SQL> desc employee;

98

 Name Null? Type

 --------------------- -------- ------------

 EMPLOYEE_NAME VARCHAR2(10)

 EMPLOYEE_NO NOT NULL NUMBER

 DEPT_NO NUMBER

 DEPT_NAME VARCHAR2(10)

SELECTION OF TABLE VALUES

--

SQL> select * from employee;

EMPLOYEE_N EMPLOYEE_NO DEPT_NO DEPT_NAME

------------------- ---------------------- ------------- -------------------

Ganesh 234 45 CSE

Vijay 877 85 EEE

Vignesh 990 95 BME

SQL> select * from employee1;

EMPLOYEE_N EMPLOYEE_NO DEPT_NO DEPT_NAME

------------------- ---------------------- ------------- -------------------

Ganesh 234 45 CSE

Vishnu 476 55 IT

Vikram 985 75 ECE

JOIN COMMANDS

Note : Without defining foreign key ,Join commands cannot be executed

SQL> alter table employee1 add foreign key (employee_no) references employee1

(employee_no);

Table altered.

INNER JOIN

SQL> select e.employee_name,d.dept_no from employee e,employee1 d where

e.employee_no=d.employee_no;

EMPLOYEE_N DEPT_NO

------------------- --------------

Ganesh 45

99

LEFT OUTER JOIN

SQL> select e.dept_name,d.dept_no from employee e,employee1 d where e.employee_no

(+) = d.employee_no;

DEPT_NAME DEPT_NO

----------------- --------------

 55

 75

 CSE 45

RIGHT OUTER JOIN

SQL> select e.dept_name,d.dept_no from employee e,employee1 d where e.employee_no

= d.employee_no (+);

DEPT_NAME DEPT_NO

----------------- --------------

CSE 45

EEE

BME

SUB-QUERY

SQL> update employee set dept_no=(select sum(employee_no)from employee)where

employee_no=234;

1 row updated.

SQL> select * from employee;

EMPLOYEE_N EMPLOYEE_NO DEPT_NO DEPT_NAME

------------------- ---------------------- ------------- -------------------

Ganesh 234 2101 CSE

Vijay 877 85 EEE

Vignesh 990 95 BME

SQL> create table sailor(sid number(4),sname char(15),rating number(4),age

number(2),primary key(sid));

Table created.

SQL> desc sailor;

100

 Name Null? Type

 --- -------- ----------------------------

 SID NOT NULL NUMBER(4)

 SNAME CHAR(15)

 RATING NUMBER(4)

 AGE NUMBER(2)

SQL> insert into sailor values(&sid,'&sname',&rating,&age);

Enter value for sid: 11

Enter value for sname: john

Enter value for rating: 8

Enter value for age: 21

old 1: insert into sailor values(&sid,'&sname',&rating,&age)

new 1: insert into sailor values(11,'john',8,21)

1 row created.

SQL> /

Enter value for sid: 12

Enter value for sname: lubber

Enter value for rating: 9

Enter value for age: 21

old 1: insert into sailor values(&sid,'&sname',&rating,&age)

new 1: insert into sailor values(12,'lubber',9,21)

1 row created.

SQL> /

Enter value for sid: 13

Enter value for sname: david

Enter value for rating: 7

Enter value for age: 22

old 1: insert into sailor values(&sid,'&sname',&rating,&age)

new 1: insert into sailor values(13,'david',7,22)

1 row created.

SQL> select * from sailor;

 SID SNAME RATING AGE

---------- --------------- ---------- ----------

 11 john 8 21

 12 lubber 9 21

 13 david 7 22

101

SQL> create table boat(bid number(4),bname char(15),color char(6),primary

key(bid),check(color in('red','blue','green')));

Table created.

SQL> desc boat;

 Name Null? Type

 --- -------- ----------------------------

 BID NOT NULL NUMBER(4)

 BNAME CHAR(15)

 COLOR CHAR(6)

SQL> insert into boat values(&bid,'&bname','&color');

Enter value for bid: 102

Enter value for bname: a2

Enter value for color: red

old 1: insert into boat values(&bid,'&bname','&color')

new 1: insert into boat values(102,'a2','red')

1 row created.

SQL> /

Enter value for bid: 101

Enter value for bname: a2

Enter value for color: blue

old 1: insert into boat values(&bid,'&bname','&color')

new 1: insert into boat values(101,'a2','blue')

1 row created.

SQL> /

Enter value for bid: 103

Enter value for bname: a3

Enter value for color: green

old 1: insert into boat values(&bid,'&bname','&color')

new 1: insert into boat values(103,'a3','green')

1 row created.

SQL> select * from boat;

 BID BNAME COLOR

---------- --------------- ------

 102 a2 red

 101 a2 blue

 103 a3 green

102

SQL> create table reserve(sid number(4),bid number(4),day date,primary

key(sid,bid),foreign key(references sailor,foreign key(bid)references boat);

Table created.

SQL> desc reserve;

 Name Null? Type

 --- -------- ----------------------------

 SID NOT NULL NUMBER(4)

 BID NOT NULL NUMBER(4)

 DAY DATE

SQL> insert into reserve values(&sid,&bid,'&day');

Enter value for sid: 11

Enter value for bid: 101

Enter value for day: 11-aug-09

old 1: insert into reserve values(&sid,&bid,'&day')

new 1: insert into reserve values(11,101,'11-aug-09')

1 row created.

SQL> /

Enter value for sid: 12

Enter value for bid: 102

Enter value for day: 15-sep-09

old 1: insert into reserve values(&sid,&bid,'&day')

new 1: insert into reserve values(12,102,'15-sep-09')

1 row created.

SQL> select * from reserve;

 SID BID DAY

---------- ---------- ---------

 11 101 11-AUG-09

 12 102 15-SEP-09

SQL> desc boat;

 Name Null? Type

 --- -------- ----------------------------

 BID NOT NULL NUMBER(4)

 BNAME CHAR(15)

 COLOR CHAR(6)

SQL> insert into boat values(&bid,'&bname','&color');

Enter value for bid: 102

103

Enter value for bname: a2

Enter value for color: red

old 1: insert into boat values(&bid,'&bname','&color')

new 1: insert into boat values(102,'a2','red')

1 row created.

SQL> /

Enter value for bid: 101

Enter value for bname: a2

Enter value for color: blue

old 1: insert into boat values(&bid,'&bname','&color')

new 1: insert into boat values(101,'a2','blue')

1 row created.

SQL> /

Enter value for bid: 103

Enter value for bname: a3

Enter value for color: green

old 1: insert into boat values(&bid,'&bname','&color')

new 1: insert into boat values(103,'a3','green')

1 row created.

SQL> select * from boat;

 BID BNAME COLOR

---------- --------------- ------

 102 a2 red

 101 a2 blue

 103 a3 green

SQL> create table reserve(sid number(4),bid number(4),day date,primary

key(sid,bid),foreign key(sid)references sailor,foreign key(bid)references boat);

Table created.

SQL> desc reserve;

 Name Null? Type

 --- -------- ----------------------------

 SID NOT NULL NUMBER(4)

 BID NOT NULL NUMBER(4)

 DAY DATE

104

SQL> insert into reserve values(&sid,&bid,'&day');

Enter value for sid: 11

Enter value for bid: 101

Enter value for day: 11-aug-09

old 1: insert into reserve values(&sid,&bid,'&day')

new 1: insert into reserve values(11,101,'11-aug-09')

1 row created.

SQL> /

Enter value for sid: 12

Enter value for bid: 102

Enter value for day: 15-sep-09

old 1: insert into reserve values(&sid,&bid,'&day')

new 1: insert into reserve values(12,102,'15-sep-09')

1 row created.

SQL> select * from reserve;

 SID BID DAY

---------- ---------- ---------

 11 101 11-AUG-09

 12 102 15-SEP-09

SQL> select sname from sailor where sid in(select sid from reserve where bid=103);

no rows selected

SQL> select sname from sailor where sid in(select sid from reserve where bid=102);

SNAME

lubber

SQL> select sid from reserve where bid in(select bid from boat where color='red');

 SID

 12

SQL> select color from boat where bid in(select bid from reserve where sid in(select sid

from sailore where sname='lubber'));

COLOR

105

red

RESULT: Thus, the SQL commands for Joins and Nested queries has been verified and

executed successfully.

106

EX:NO:4 SQL COMMANDS FOR VIEWS

AIM

To execute and verify the SQL commands for Views.

PROCEDURE

STEP 1: Start

STEP 2: Create the table with its essential attributes.

STEP 3: Insert attribute values into the table.

STEP 4: Create the view from the above created table.

STEP 5: Execute different Commands and extract information from the View.

STEP 6: Stop

SQL COMMANDS

1. COMMAND NAME: CREATE VIEW

 COMMAND DESCRIPTION: CREATE VIEW command is used to define a view.

2. COMMAND NAME: INSERT IN VIEW

 COMMAND DESCRIPTION: INSERT command is used to insert a new row into the view.

3. COMMAND NAME: DELETE IN VIEW

 COMMAND DESCRIPTION: DELETE command is used to delete a row from the view.

4. COMMAND NAME: UPDATE OF VIEW

 COMMAND DESCRIPTION: UPDATE command is used to change a value in a tuple

 without changing all values in the tuple.

5. COMMAND NAME: DROP OF VIEW

 COMMAND DESCRIPTION: DROP command is used to drop the view table

COMMANDS EXECUTION

CREATION OF TABLE

SQL> create table employee (Employee_name varchar2(10),employee_nonumber(8),

dept_name varchar2(10),dept_no number (5),date_of_join date);

Table created.

TABLE DESCRIPTION

SQL> desc employee;

 Name Null? Type

 ------------------------------- -------- ------------------------

 EMPLOYEE_NAME VARCHAR2(10)

 EMPLOYEE_NO NUMBER(8)

 DEPT_NAME VARCHAR2(10)

 DEPT_NO NUMBER(5)

 DATE_OF_JOIN DATE

107

CREATION OF VIEW

SQL> create view empview as select

employee_name,employee_no,dept_name,dept_no,date_of_join from employee;

View created.

DESCRIPTION OF VIEW

SQL> desc empview;

Name Null? Type

 --- -------- ----------------------------

 EMPLOYEE_NAME VARCHAR2(10)

 EMPLOYEE_NO NUMBER(8)

 DEPT_NAME VARCHAR2(10)

 DEPT_NO NUMBER(5)

SQL> select * from empview;

EMPLOYEE_N EMPLOYEE_NO DEPT_NAME DEPT_NO

---------- ----------- ---------- ----------

Ravi 124 ECE 89

Vijay 345 CSE 21

Raj 98 IT 22

Giri 100 CSE 67

MODIFICATION

SQL> insert into empview values ('Sri',120,'CSE',67,'16-nov-1981');

1 row created.

SQL> select * from empview;

EMPLOYEE_N EMPLOYEE_NO DEPT_NAME DEPT_NO

---------- ----------- ---------- ----------

Ravi 124 ECE 89

Vijay 345 CSE 21

Raj 98 IT 22

Giri 100 CSE 67

Sri 120 CSE 67

SQL> select * from employee;

108

EMPLOYEE_N EMPLOYEE_NO DEPT_NAME DEPT_NO DATE_OF_J

---------- ----------- ---------- ---------- ---------

Ravi 124 ECE 89 15-JUN-05

Vijay 345 CSE 21 21-JUN-06

Raj 98 IT 22 30-SEP-06

Giri 100 CSE 67 14-NOV-81

Sri 120 CSE 67 16-NOV-81

SQL> delete from empview where employee_name='Sri';

1 row deleted.

SQL> select * from empview;

EMPLOYEE_N EMPLOYEE_NO DEPT_NAME DEPT_NO

---------- ----------- ---------- ----------

Ravi 124 ECE 89

Vijay 345 CSE 21

Raj 98 IT 22

Giri 100 CSE 67

SQL> update empkaviview set employee_name='kavi' where employee_name='ravi';

0 rows updated.

SQL> update empkaviview set employee_name='kavi' where employee_name='Ravi';

1 row updated.

SQL> select * from empkaviview;

EMPLOYEE_N EMPLOYEE_NO DEPT_NAME DEPT_NO

---------- ----------- ---------- ----------

kavi 124 ECE 89

Vijay 345 CSE 21

Raj 98 IT 22

Giri 100 CSE 67

SQL>drop view empview;

 View droped

RESULT: Thus, the l SQL commands for View has been verified and executed

successfully.

109

EX:NO:5A CURSOR

AIM

To write a Cursor Procedure to calculate Payroll process of an Employee.

PROCEDURE

STEP 1: Start

STEP 2: Initialize the Cursor Procedure based on the table attributes to which the actual

operation has to be carried out.

STEP 3: Develop the procedure with the essential operational parameters.

STEP 4: Specify the Individual operation to be each attribute.

STEP 5: Execute the Cursor procedure.

STEP 6: Stop

EXECUTION

SQL> create table sal(emp_no number(4) primary key,emp_name varchar2(30),designation

varchar2(25),department varchar2(30),basic number(5),da_percent number(6,2), ma

number(6,2),other_allowances number(6,2),deduction number(6,2));

Table created.

SQL> insert into sal values (1,'vijay','manager','Accounts',6000,45,200,250,1500.75);

1 row created.

SQL> insert into sal values (2,'vasanth','Asst.manager','Accounts',4000,45,200,200,1200);

1 row created.

SQL> insert into sal values(3,'priya','Steno','sales',2000,45,100,50,200);

1 row created.

SQL> select * from sal;

Emp_no Emp_name Designation Department Basic da_percent MA other_allowance

Deduction

 1 vijay manager Accounts 6000 45 200 250 1500.75

 2 vasanth AsstmanagerAccounts 4000 45 200 200 1200

 3 priya Steno sales 2000 45 100 50 200

SQL> declare

e_no number(6);

e_name varchar2(25);

net_salary number(8,2);

cursor cur_salary is select emp_no,

emp_name,basic+da_percent*basic/100+ma+other_allowances-deduction from sal;

110

begin

dbms_output.put_line('emp no '||' Name '||' Net salary');

dbms_output.put_line('--------------------');

 open cur_salary;

loop

fetch cur_salary into e_no,e_name,net_salary;

exit when cur_salary%notfound;

dbms_output.put_line(rpad(e_no,10,' ')||rpad(e_name,25,' ')||net_salary);

end loop;

close cur_salary;

end;

/

OUTPUT:

emp no Name Net salary

 1 vijay 7649.25

 2 vasanth 5000

 3 priya 2850

PL/SQL procedure successfully completed.

RESULT: Thus, the Cursor Procedure for calculating the Payroll process has been

 executed successfully.

111

EX:NO:5B PROCEDURES

AIM

To write a PL/SQL block to display the student name, marks whose average mark is above 60%.

ALGORITHM

STEP1:Start

STEP2:Create a table with table name stud_exam

STEP3:Insert the values into the table and Calculate total and average of each student

 STEP4: Execute the procedure function the student who get above 60%.

STEP5: Display the total and average of student

STEP6: End

CODINGS

SQL> create table student(regno number(4),name varchar2)20),mark1 number(3), mark2

number(3), mark3 number(3), mark4 number(3), mark5 number(3));

Table created

SQL> insert into student values (101,'priya', 78, 88,77,60,89);

1 row created.

SQL> insert into student values (102,'surya', 99,77,69,81,99);

1 row created.

SQL> insert into student values (103,'suryapriya', 100,90,97,89,91);

1 row created.

SQL> select * from student;

regno name mark1 mark2 mark3 mark4 mark5

--

101 priya 78 88 77 60 89

102 surya 99 77 69 81 99

103 suryapriya 100 90 97 89 91

SQL> declare

ave number(5,2);

112

tot number(3);

cursor c_mark is select*from student where mark1>=40 and mark2>=40 and

mark3>=40 and mark4>=40 and mark5>=40;

begin

dbms_output.put_line('regno name mark1 mark2 mark3 mark4 mark5 total average');

dbms_output.put_line('---');

for student in c_mark

loop

tot:=student.mark1+student.mark2+student.mark3+student.mark4+student.mark5;

ave:=tot/5;

dbms_output.put_line(student.regno||rpad(student.name,15)

||rpad(student.mark1,6)||rpad(student.mark2,6)||rpad(student.mark3,6)

||rpad(student.mark4,6)||rpad(student.mark5,6)||rpad(tot,8)||rpad(ave,5));

end loop;

end;

/

SAMPLE OUTPUT

regno name mark1 mark2 mark3 mark4 mark5 total average

--

101 priya 78 88 77 60 89 393 79

102 surya 99 77 69 81 99 425 85

103 suryapriya 100 90 97 89 91 467 93

PL/SQL procedure successfully completed.

RESULT:

Thus, the PL/SQL block to display the student name,marks,average is verified and executed.

113

EX:NO:5C FUNCTIONS

AIM

To write a Functional procedure to search an address from the given database.

PROCEDURE

STEP 1: Start

STEP 2: Create the table with essential attributes.

STEP 3: Initialize the Function to carryout the searching procedure..

STEP 4: Frame the searching procedure for both positive and negative searching.

STEP 5: Execute the Function for both positive and negative result .

STEP 6: Stop

EXECUTION

SQL> create table phonebook(phone_no number(6) primary key,username varchar2(30),doorno

varchar2(10),street varchar2(30),place varchar2(30),pincode char(6));

Table created.

SQL> insert into phonebook values(20312,'vijay','120/5D','bharathi street','NGO

colony','629002');

1 row created.

SQL> insert into phonebook values(29467,'vasanth','39D4','RK bhavan','sarakkal vilai','629002');

1 row created.

SQL> select * from phonebook;

PHONE_NO USERNAME DOORNO STREET PLACE PINCODE

------------------------------- ------------- ---------------- --------------------

20312 vijay 120/5D bharathi street NGO colony 629002

29467 vasanth 39D4 RK bhavan sarakkal vilai 629002

SQL> create or replace function findAddress(phone in number) return varchar2 as

 address varchar2(100);

begin

select username||','||doorno ||','||street ||','||place||','||pincode into address from phonebook

where phone_no=phone;

return address;

exception

 when no_data_found then return 'address not found';

 end;

/

Function created.

114

SQL>declare

 2 address varchar2(100);

 3 begin

 4 address:=findaddress(20312);

 5 dbms_output.put_line(address);

 6 end;

 7 /

OUTPUT 1:

vijay,120/5D,bharathi street,NGO colony,629002

PL/SQL procedure successfully completed.

SQL> declare

 2 address varchar2(100);

 3 begin

 4 address:=findaddress(23556);

 5 dbms_output.put_line(address);

 6 end;

 7 /

OUTPUT2:

address not found

PL/SQL procedure successfully completed.

RESULT: Thus, the Function for searching process has been executed successfully.

115

EX: NO: 5 D CONTROLS

AIM

To write a PL/SQL block using different control (if else, for loop, while loop,…) statements.

PROCEDURE

STEP 1: Start

STEP 2: Initialize the necessary parameters.

STEP 3: Develop the set of statements with the essential operational parameters.

STEP 4: Specify the Individual operation to be carried out.

STEP 5: Execute the statements.

STEP 6: Stop.

********************ADDITION OF TWO NUMBERS***********************

SQL> declare

a number;

 b number;

c number;

begin

a:=&a;

b:=&b;

c:=a+b;

dbms_output.put_line('sum of'||a||'and'||b||'is'||c);

end;

 /

INPUT:

Enter value for a: 23

old 6: a:=&a;

new 6: a:=23;

Enter value for b: 12

old 7: b:=&b;

new 7: b:=12;

OUTPUT:

sum of23and12is35

PL/SQL procedure successfully completed.

*********** GREATEST OF THREE NUMBERS USING IF ELSE*************

SQL> declare

 a number;

b number;

c number;

d number;

begin

a:=&a;

b:=&b;

116

 c:=&b;

if(a>b)and(a>c) then

dbms_output.put_line('A is maximum');

 elsif(b>a)and(b>c)then

dbms_output.put_line('B is maximum');

else

dbms_output.put_line('C is maximum');

end if;

end;

 /

INPUT:

Enter value for a: 21

old 7: a:=&a;

new 7: a:=21;

Enter value for b: 12

old 8: b:=&b;

new 8: b:=12;

Enter value for b: 45

old 9: c:=&b;

new 9: c:=45;

OUTPUT:

C is maximum

PL/SQL procedure successfully completed.

117

***********SUMMATION OF ODD NUMBERS USING FOR LOOP***********

SQL> declare

n number;

sum1 number default 0;

endvalue number;

begin

endvalue:=&endvalue;

 n:=1;

for n in 1..endvalue

loop

 if mod(n,2)=1

then

sum1:=sum1+n;

end if;

 end loop;

dbms_output.put_line('sum ='||sum1);

end;

 /

INPUT:

Enter value for endvalue: 4

old 6: endvalue:=&endvalue;

new 6: endvalue:=4;

OUTPUT:

 sum =4

PL/SQL procedure successfully completed.

118

***********SUMMATION OF ODD NUMBERS USING WHILE LOOP***********

SQL> declare

n number;

sum1 number default 0;

endvalue number;

begin

endvalue:=&endvalue;

n:=1;

while(n<endvalue)

loop

sum1:=sum1+n;

n:=n+2;

end loop;

dbms_output.put_line('sum of odd no. bt 1 and' ||endvalue||'is'||sum1);

end;

/

INPUT:

Enter value for endvalue: 4

old 6: endvalue:=&endvalue;

new 6: endvalue:=4;

OUTPUT:

sum of odd no. bt 1 and4is4

PL/SQL procedure successfully completed.

RESULT:

Thus, the PL/SQL block for different controls are verified and executed.

119

EX:NO:6 FRONT END TOOLS

AIM

To design a form using different tools in Visual Basic.

PROCEDURE

STEP 1: Start

STEP 2: Create the form with essential controls in tool box.

STEP 3: Write the code for doing the appropriate functions.

STEP 4: Save the forms and project.

STEP 5: Execute the form .

STEP 6: Stop

EXECUTION

Form1

Private Sub Command1_Click()

List1.AddItem Text1.Text

List1.AddItem Text2.Text

If Option1.Value = True Then

gender = "male"

End If

If Option2.Value = True Then

gender = "female"

End If

List1.AddItem gender

List1.AddItem Text3.Text

If Check1.Value = 1 And Check2.Value = 0 Then

area = "software Engineering"

End If

If Check1.Value = 1 And Check2.Value = 1 Then

area = "software Engineering & Networks"

End If

If Check1.Value = 0 And Check2.Value = 1 Then

area = " Networks"

End If

List1.AddItem area

List1.AddItem Text4.Text

End Sub

Private Sub Command2_Click()

If List1.ListIndex <> 0 Then

List1.RemoveItem (0)

End If

End Sub

Private Sub Command3_Click()

120

End

End Sub

Sample Snapshot:

121

122

RESULT: Thus, the program has been loaded and executed successfully.

123

EX:NO:7 FORM DESIGN

AIM

To design a form using Visual Basic.

PROCEDURE

STEP 1: Start

STEP 2: Create the form with essential controls in tool box.

STEP 3: Write the code for doing the appropriate functions.

STEP 4: Save the forms and project.

STEP 5: Execute the form.

STEP 6: Stop

EXECUTION

Form1

Private Sub Command1_Click()

Dim a As Integer

a = Val(Text1.Text) + Val(Text2.Text)

MsgBox ("Addition of Two numbers is" + Str(a))

End Sub

Private Sub Command2_Click()

Dim b As Integer

b = Val(Text1.Text) - Val(Text2.Text)

MsgBox ("Subraction of Two numbers is" + Str(b))

End Sub

Private Sub Command3_Click()

Dim c As Integer

c = Val(Text1.Text) * Val(Text2.Text)

MsgBox ("Multiplication of Two numbers is" + Str(c))

End Sub

Private Sub Command4_Click()

Dim d As Integer

d = Val(Text1.Text) / Val(Text2.Text)

MsgBox ("Division of Two numbers is" + Str(d))

End Sub

Private Sub Command5_Click()

End

End Sub

124

Sample Snapshot:

125

RESULT: Thus, the program has been loaded and executed successfully.

126

EX:NO:8 TRIGGER

AIM

To develop and execute a Trigger for Before and After update, delete, insert operations on a

table.

PROCEDURE

STEP 1: Start

STEP 2: Initialize the trigger with specific table id.

STEP 3:Specify the operations (update, delete, insert) for which the trigger has to be

 executed.

STEP 4: Execute the Trigger procedure for both Before and After sequences

STEP 5: Carryout the operation on the table to check for Trigger execution.

STEP 6: Stop

EXECUTION

SQL> create table empa(id number(3),name varchar2(10),income number(4),expence

number(3),savings number(3));

Table created.

SQL> insert into empa values(2,'kumar',2500,150,650);

1 row created.

SQL> insert into empa values(3,'venky',5000,900,950);

1 row created.

SQL> insert into empa values(4,'anish',9999,999,999);

1 row created.

SQL> select * from empa;

ID NAME INCOME EXPENCE SAVINGS

---------- ---------- ---------- ---------- ---------------------------------------

 2 kumar 2500 150 650

 3 venky 5000 900 950

 4 anish 9999 999 999

TYPE 1- TRIGGER AFTER UPDATE

--

SQL> CREATE OR REPLACE TRIGGER VIJAY

 AFTER UPDATE OR INSERT OR DELETE ON EMPA

 FOR EACH ROW

 BEGIN

IF UPDATING THEN

127

 DBMS_OUTPUT.PUT_LINE('TABLE IS UPDATED');

ELSIF INSERTING THEN

DBMS_OUTPUT.PUT_LINE('TABLE IS INSERTED');

ELSIF DELETING THEN

DBMS_OUTPUT.PUT_LINE('TABLE IS DELETED');

END IF;

END;

/

Trigger created.

SQL> update empa set income =900 where name='kumar';

TABLE IS UPDATED

1 row updated.

SQL> insert into emp values (4,'Chandru',700,250,80);

TABLE IS INSERTED

1 row created.

SQL> DELETE FROM EMPA WHERE ID = 4;

TABLE IS DELETED

1 row deleted.

SQL> select * from empa;

 EMPID EMPNAME INCOME EXPENSE SAVINGS

 --------- --------------- ------------ ------------- -------------

 2 vivek 830 150 100

 3 kumar 5000 550 50

 9 vasanth 987 6554 644

TYPE 2 - TRIGGER BEFORE UPDATE

--

SQL> CREATE OR REPLACE TRIGGER VASANTH

BEFORE UPDATE OR INSERT OR DELETE ON EMPLOYEE

FOR EACH ROW

BEGIN

IF UPDATING THEN

DBMS_OUTPUT.PUT_LINE('TABLE IS UPDATED');

ELSIF INSERTING THEN

DBMS_OUTPUT.PUT_LINE('TABLE IS INSERTED');

ELSIF DELETING THEN

DBMS_OUTPUT.PUT_LINE('TABLE IS DELETED');

END IF;

END;

/

128

Trigger created.

SQL> INSERT INTO EMP VALUES (4,'SANKAR',700,98,564);

TABLE IS INSERTED

1 row created.

SQL> UPDATE EMP SET EMPID = 5 WHERE EMPNAME = 'SANKAR';

TABLE IS UPDATED

1 row updated.

SQL> DELETE EMP WHERE EMPNAME='SANKAR';

TABLE IS DELETED

1 row deleted.

RESULT: Thus, the Trigger procedure has been executed successfully for both before

 and after sequences.

129

REFERENCES

1.Database Management Systems solutions manual, Raghu Ramakrishnan,

Johannes Gehrke, Jeff Derstadt, Scott Selikoff and Lin Zhu, third Edition,

2013

2.SQL with Guru99 by Krishna Rungta,Smashwords 2013

3.A Primer on SQL by Rahul Batra, dreamincode.net 2012

4.Learn SQL The Hard Way by Zed A. Shaw, LCodeTHW 2011

5.Developing Time-Oriented Database Applications in SQL, by Richard T.

Snodgrass, Morgan Kaufmann 1999

ISBN: 978-93-5437-572-9

Price: ₹. 250/-

ABOUT AUTHORS

John T Mesia Dhas received his Ph.D. in Computer Science and Engineering

from Vel Tech University, Chennai, India. He has 16 years of Experience in the

field of Education and Industry, currently he is working as an Associate Professor

with Computer Science and Engineering Department of Audisankara College of

Engineering and Technology, Gudur, Andhra Pradesh, India under Jawaharlal

Nehru Technological University Anantapuramu.

He is also doing researches in Software Engineering and Data Analytics

fields. He has published more than 22 research papers in conferences and

Journals.

T. S. Shiny Angel received her Ph.D. in Computer Science and Engineering

from SRM University, Chennai, India. She has 19 years of Experience in the field

of Education and Industry, currently she is working as an Assistant Professor Sr.

Grade with Software Engineering Department of SRM Institute of Science and

Technology (formerly known as SRM University), Chennai, Tamil Nadu, India.

She is also doing researches in Software Engineering, Machine Learning and

Data Analytics fields. She has published more than 45 research papers in

conferences and Journals.

ISBN: 978-93-5437-572-9

Price: ₹. 250/-

OTHER BOOKS

S. No Title ISBN

1 C LOGIC PROGRAMMING 978-93-5416-366-1

2

Modern Metrics (MM): The

Functional Size Estimator for Modern

Software

978-93-5408-510-9

3 PYTHON 3.7.1 Vol - I 978-93-5416-045-5

4 SOFTWARE SIZING APPROACHES 978-93-5437-820-1

5 DBMS PRACTICAL PROGRAMS 978-93-5437-572-9

6

SERVICE ORIENTED

ARCHITECTURE

978-93-5416-496-5

For free E-Books: jtmdhasres@gmail.com

