
MODERN
METRICS

(MM):
The Functional

Size Estimator for
Modern Software

Dr. John T Mesia Dhas

MODERN
METRICS

(MM):
The Functional

Size Estimator for
Modern Software

Dr. John T Mesia Dhas

Title: Modern Metrics (MM): The Functional Size Estimator for Modern

 Software

Author: Dr. John T Mesia Dhas

Publisher: Self-published by Dr. John T Mesia Dhas

Copyright © 2020 Dr. John T Mesia Dhas

All rights reserved, including the right of reproduction in whole or in part or any

form

Address of Publisher: No-1, MGR Street, Charles Nagar, Pattabiram

Chennai – 600072

India

Email: jtmdhasres@gmail.com

Printer: The Palm

 Gangai Amman Nagar, Mogappair West

 Chennai -600037

 India

ISBN: 978-93-5408-510-9

mailto:jtmdhasres@gmail.com

ABSTRACT

The modern software system is programming language independent,

operating system neutral, highly extensible and dynamic. About fifteen distinct

programming languages, operating system, development tools and utility

software are used for developing a new software system. The existing

particularistic approached software sizing techniques are not efficient for

estimating the size of versatile modern software.

Modern Metrics (MM) is a novel method for estimating the size of

modern software system. MM is independent of computer languages, operating

system, development methodology, application domain and technology behind

the development. MM can be estimated early in the analysis and design phase

of the System Development Life Cycle (SDLC) and is prepared based on the

user, developer and environmental perspectives.

This novel method MM analyses all possible functional units and

complexity factors of modern software. So, the defects present in the existing

Function Point Analysis (FPA) are reduced. MM considers internal inputs,

internal operations, database, SDLCs, output formats, international standards

and multiple software usage. It increases the accuracy of the results and also

reflects good results in cost, size and time constraints.

ii

The performance of MM is accurate in industrial results in

developing the software compared with existing FPA method. The result

analysis of MM and FPA with Software Project Management (SPM) metrics

like size, effort, cost and time implies, MM is more accurate than existing FPA

and it is a suitable approach for calculating the size of modern software system.

The proposed MM method is a successful approach to determine the

size of modern software system and it leads to the success of project

management activities of modern software system development.

iii

ACKNOWLEDGEMENT

First and foremost, I express my deep debt of gratitude to the Founder

Chancellor & President Col. Prof. Dr. Vel. R. Rangarajan and Foundress

President Dr. Mrs. Sagunthala Rangarajan for their immense contribution in

making this organization grow and providing me the state of the art facilities to

do this research work.

My heartfelt gratefulness to Chairperson & Managing Trustee

Dr. Mrs. Rangarajan Mahalakshmi Kishore and Vice President

Mr. K. V. D. Kishore Kumar for their deep commitment and dedication, to

bring this institution to the peak in terms of discipline and values.

I would like to acknowledge my boundless feelings of thankfulness

to the Chancellor Dr. Beela Satyanarayana for his visionary guidelines on this

research work.

I voice my great pleasure and happiness to the respected

Vice Chancellor Dr. V. S. S. Kumar for his in depth contribution for this

research work.

iv

Above all, my successful completion could not have been

accomplished without our Registrar Dr. E. Kannan for his generous output

and exemplary leadership in guiding my research in all aspects.

I owe my full satisfaction in my research work to the extensive hands

of cooperation of Dr. Anne Koteswara Rao, Director Academics.

I would like to express my deep appreciation and sincere gratitude to

my research supervisor, Dr. C. R. Bharathi, Associate Professor, Department

of Electronics and Communication Engineering, Vel Tech Rangarajan Dr.

Sagunthala R&D Institute of Science and Technology, Chennai, India for her

guidance, support, encouragement, understanding and patience. I have been

honored to work under her supervision and learn from her advice and useful

insights throughout my Ph.D programme.

I extend my warm feelings of gratitude to Dr. S. Koteeswaran, Dean

(Research Studies) for his support and help with respect to my research work.

I warmly thank my Doctoral Committee member, Dr. P. Sakthivel,

Associate Professor, Department of Electronics and Communication

Engineering, Anna University, Chennai for his valuable advice and extensive

discussions about my work.

v

I extend my gratitude to Dr. N. Malarvizhi, Professor and Head,

Department of Computer Science and Engineering for her constant support to

complete the research work.

I express my sincere thanks to all the Professors and

non-teaching staffs of Vel Tech Rangarajan Dr. Sagunthala R&D Institute

of Science and Technology, Chennai who cooperated with me which helps

me to realize my dream.

I express my sincere thanks to the Chairman, Trustees, Principal,

Professors and non-teaching staffs of Audisankara College of Engineering

and Technology, Gudur, Andhra Pradesh who cooperated with me in all

climates for successful completion of this book.

I convey my special gratitude to my beloved family for their loving

support and encouragement which enables me to complete this research work

successfully.

JOHN T MESIA DHAS

vi

TABLE OF CONTENTS

CHAPTER

NO.
 TITLE

PAGE

NO.

 LIST OF TABLES x

 LIST OF FIGURES xii

 LIST OF ABBREVIATIONS xiii

 LIST OF SYMBOLS xvi

1 SOFTWARE PROJECT MANAGEMENT 1

 1.1 SOFTWARE DEVELOPMENT PLANNING 3

 1.1.1 Activities during Software Planning 5

1.1.2 Specific Quantities to Estimate and

Measure during the Life Cycle of Project
6

 1.2 ABOUT SIZING APPROACHES 7

 1.3
MODERN SOFTWARE SYSTEM SIZING

TECHNIQUES
7

 1.3.1 Architecture of Modern Software System 9

1.3.2 Necessities for a Sizing Approach in

Modern Software System
10

 1.7 SUMMARY 11

2 SOFTWARE SIZE ESTIMATION TECHNIQUES 13

 2.1 SOFTWARE SIZING TECHNIQUES 13

 2.2
SOFTWARE PROJECT MANAGEMENT (SPM)

ACTIVITIES
16

 2.3 MODERN SOFTWARE SYSTEM 20

 2.4
LIMITATIONS OF EXISTING SYSTEM:

FUNCTION POINT ANALYSIS (FPA)
23

 2.5
COMPARISON OF EXISTING SIZING

TECHNIQUES
25

 2.6 SUMMARY 27

3
SIZING APPROACHES FOR MODERN

SOFTWARE SYSTEM
28

 3.1 ESSENTIALS OF SIZING APPROACHES 29

vii

CHAPTER

NO.
 TITLE

PAGE

NO.

 3.2 BASIC PROCESS TO ESTIMATE THE SIZE 30

 3.3 CHOOSING A SIZE MEASURE 30

 3.4 SIZING APPROACHES 31

 3.4.1 Code Based Techniques 32

 3.4.2 Expert Based Techniques 33

 3.4.3 Function Based Techniques 35

 3.5
RISKS ASSOCIATED TO MODERN

SOFTWARE SYSTEM’S SIZE ESTIMATION
51

 3.5.1 Functional Risks 51

 3.5.2 Social Risks 53

 3.6 FINDINGS IN FPA 54

 3.7 SUMMARY 60

4 MODERN METRICS SIZING TECHNIQUE 62

 4.1 MODERN METRICS 62

 4.1.1 Architecture of MM 63

 4.1.2 Functional Units of MM 63

 4.1.3The Metrics of the Functional Units of MM 65

4.1.4 Functional Units with Metrics and Metric

Values of MM
67

 4.1.5 Calculating Functional Units (FU) of MM 73

4.1.6 Complexity Adjustment Factors (CAF) of

MM
74

4.1.7 Calculating Unadjusted Modern Metrics

Function Points (UMMFP)
76

 4.1.8 Modern Metrics Size (MMSize) 78

 4.2 ALGORITHM FOR MM 78

 4.3 OTHER ESTIMATIONS BASED ON MM 89

 4.3.1 Modern Metrics Productivity Factor(MMPF) 89

 4.3.2 Modern Metrics Effort (MME) 90

 4.3.3 Modern Metrics Duration (MMD) 90

viii

CHAPTER

NO.
 TITLE

PAGE

NO.

 4.3.4 Modern Metrics Cost (MMC) 91

 4.4 SUMMARY 91

5
PRACTICAL IMPLEMENTATION OF MODERN

METRICS
93

 5.1 USE CASE MODEL OF MM 93

 5.2 CALCULATING THE FUNCTIONAL UNITS 95

 5.3
UNADJUSTED MM FUNCTION POINTS

CALCULATION
96

 5.4 COMPLEXITY ADJUSTMENT FACTOR (CAF) 97

 5.5 OTHER ESTIMATIONS 102

 5.6 SUMMARY 104

6 RESULT ANALYSIS 106

 6.1
TRADITIONAL FUNCTION POINT ANALYSIS

(FPA) METHOD
106

 6.2 MODERN METRICS (MM) METHOD 108

 6.3
COMPARISON OF FPA AND MM WITH

INTERMEDIATE RESULTS
109

 6.4
COMPARISON OF FPA AND MM WITH

OTHER RESULTS
110

 6.5
ANALYSIS WITH OTHER SOFTWARE: CASE

STUDY
110

 6.6
ANALYSIS WITH DIFFERENT FUNCTIONAL

UNITS
112

 6.7 DIFFERENCE BETWEEN FPA AND MM 113

 6.8 SUMMARY 116

 CONCLUSION 117

 FUTURE ENHANCEMENTS 118

 APPENDIX 1 119

 APPENDIX 2 121

 APPENDIX 3 139

 APPENDIX 4 148

ix

CHAPTER

NO.
 TITLE

PAGE

NO.

 REFERENCES 159

 INDEX 167

x

LIST OF TABLES

TABLE

NO.
TITLE PAGE NO.

2.1 Sizing Techniques and its Features 19

2.2 Evaluation of Modern Software 21

2.3 Comparison of Sizing Techniques 25

3.1 Unadjusted Function Point Calculation 38

3.2 General System Characteristics 39

3.3 Calculating Raw Feature Points 42

3.4 Environmental Factors 43

3.5 CAF Value for Environmental Factor 43

3.6 Technical Factors and their Weight 46

3.7 The Environmental Factors and Weight 47

4.1 Metrics of Functional Units 66

4.2 EI Functional Values 67

4.3 II Functional Values 68

4.4 EO Functional Values 69

4.5 IO Functional Values 70

4.6 DT Functional Values 70

4.7 EQ Functional Values 71

4.8 ILF Functional Values 72

4.9 EIF Functional Values 73

4.10 Calculating Functional Units 73

4.11 Calculation of UMMFP 77

5.1 Functional Units Calculation 95

5.2 Unadjusted MMFP Calculation 97

5.3 MMCAF 98

5.4 MM Report 105

6.1 Traditional FPA 107

6.2 Updated UMMFP 108

6.3 FPA Size and MM Size 111

6.4 Differences between FPA and MM 114

A1.1 Sample Functional Units 120

xi

TABLE

NO.
TITLE PAGE NO.

A2.1 Functional Units with Metrics 121

A2.2 Metrics with its Values 122

A2.3 Low EI 122

A2.4 Average EI 124

A2.5 High EI 125

A2.6 Very High EI 125

A2.7 Low II 125

A2.8 Average II 126

A2.9 Very High II 127

A2.10 Low EO 127

A2.11 Average EO 130

A2.12 High EO 130

A2.13 Very High EO 130

A2.14 Low IO 131

A2.15 Average IO 133

A2.16 High IO 133

A2.17 Very High IO 133

A2.18 Low DT 134

A2.19 Very High DT 134

A2.20 Low EQ 134

A2.21 Very High EQ 135

A2.22 Low ILF 135

A2.23 Low EIF 135

A2.24 Average EIF 138

A3.1 Size of MM 140

A3.2 Size of FPA 143

A3.3 Size of MM and Size of FPA 147

A4.1 MM vs Industrial Values 149

A4.2 FPA vs Industrial Values 154

xii

LIST OF FIGURES

FIGURE

NO.
TITLE PAGE NO.

1.1 Major Activities in Project Planning 5

1.2 Major Domains of Modern Software System 9

3.1 The Estimating Techniques for Project Management 29

3.2 Classification of Sizing Methods 31

3.3 Functional units of FPA 36

4.1 Architecture of Modern Metrics 63

5.1 Use Case Model of MM 94

6.1 FPA and MM Intermediate Results 109

6.2 FPA and MM with other Results 110

6.3 MM Size and FPA Size of Software 112

6.4 MM and FPA Size 112

6.5 MM, FPA and Industry Values 113

xiii

LIST OF ABBREVIATIONS

ACRONYM ABBREVIATIONS

ADT Average functional units of Data and Text

AEI Average functional units of External Inputs

AEQ Average functional units of External Inquiries

AEIF Average functional units of External Interface Files

AEO Average functional units of External Outputs

AI Artificial Intelligence

AII Average functional units of Internal Inputs

AILF Average functional units of Internal Logical Files

AIO Average functional units of Internal Operations

COSMIC Common Software Measurement International Consortium

CAF Complexity Adjustment Factors

COCOMO Constructive Cost Model

DBMS Data Base Management System

DT Data and Text

EI External Inputs

EQ External Inquiries

EIF External Interface Files

EO External Outputs

FPA Function Point Analysis

FP Function Points

FDT Functions in Data and Text

FEI Functions in External Input

FEQ Functions in External Inquiries

FEIF Functions in External Interface Files

FEO Functions in External Outputs

FII Functions in Internal Inputs

FILF Functions in Internal Logical Files

FIO Functions in Internal Operations

GUI Graphical User Interface

II Internal Inputs

ILF Internal Logical Files

xiv

ACRONYM ABBREVIATIONS

IO Internal Operations

IFPUG International Function Point User Group

ISO International Standard Organization

ISPA International Society of Parametric Analysis

IT Information Technology

LOP Learning Object Points

LOC Lines of Code

MFP Modern Function Points

MIS Management Information System

MM Modern Metrics

MMCAF Modern Metrics Complexity Adjustment Factors

MMC Modern Metrics Cost

MMD Modern Metrics Duration

MME Modern Metrics Effort

MMPF Modern Metrics Productivity Factor

MMSize Modern Metrics Size

NESMA Netherlands Software Metrics Association

SLIM Software Life cycle Management

SPR Software Productivity Research

SPM Software Project Management

SDLC System Development Life Cycle

UDT Unadjusted Data and Text

UEI Unadjusted External Inputs

UEQ Unadjusted External Inquiries

UEIF Unadjusted External Interface Files

UEO Unadjusted External Outputs

UII Unadjusted Internal Inputs

UILF Unadjusted Internal Logical Files

UIO Unadjusted Internal Operations

UMMFP Unadjusted Modern Metrics Function Points

UML Unified Modelling Language

UCP Use Case Points

WDT Weightage of Data and Text

xv

ACRONYM ABBREVIATIONS

WEI Weightage of External Inputs

WEQ Weightage of External Inquiries

WEIF Weightage of External Interface Files

WEO Weightage of External Outputs

WII Weightage of Internal Inputs

WILF Weightage of Internal Logical Files

WIO Weightage of Internal Operations

WWW World Wide Web

xvi

LIST OF SYMBOLS

SYMBOL MEANING

+ Addition

- Subtraction

* Multiplication

/ Division

% Percentage

= Assignment

> Greater than

& Address of

∑ Sum of

1

CHAPTER 1

SOFTWARE PROJECT MANAGEMENT

The Software Project Management (SPM) is one of the fields of

Computer Science under Software Engineering. It is a management

process which leads planning, designing, implementing, testing, sizing,

monitoring and controlling the software and software development

process. The perfect initial planning is a key for success of completion and

quality development of the software system. The project planning is an

initial process for all software management activities. The systematic

planning gives all the parameters of software development like actual size

of the system, effort and skills required for system development,

technology and hypotheses used for decision making, proper schedule of

system development and price of software. The perfect plan leads delivery

of the product on its predicted time (Capers 2008).

The software industry is using distinct sizing techniques for

determining the size of the software as Lines of Code, Expert Judgement,

Constructive Cost Model (COCOMO), Function Points, Future Points,

Object Points, etc. These techniques are giving distinct results for same

software. Based on programming language, type of application, estimator

and technique used for estimation the result vary accordingly. So, the

effectiveness of size estimation techniques for modern software is

complex and critical (Capers 2007).

2

The modern software system includes all the applications like,

Webpages, networks, internet, database, Artificial Intelligence (AI) ,

designing, modelling, animation and expert systems. It is particularistic in

domain and dynamic in behaviour. The existing software sizing

techniques are not efficient for determining the actual size of complex

modern software system. The incorrect sizing of software system affects

quality of the software, customer satisfaction and System Development

Life Cycle (SDLC). The improper size of the software leads delay in

completion of the project and increases the development cost of the

software.

The Modern Metrics (MM) is a novel software size estimation

technique for modern software using modern dynamic function points.

The MM is independent of programming language, development tool,

operating system, database and all other internal, external factors of

system development process. This proposed size estimation technique

considers the user, developer and social perspectives of software system.

Therefore, the defects and wrong estimations in the size of modern

software system are resolved through this proposed MM technique.

The software size is a key factor for determining all planning

activities of software development process (Kenneth and Rogardt 2009).

The modern software is a merger of software and other Engineering

disciplines. It includes all application programs, embedded systems, data

mining, data warehousing and big data, AI, enterprise resource planning,

service oriented architecture, E-Commerce, design, modelling and

animation. This dynamic behaviour of modern software system leads

confusion in size estimation using existing software size estimation

3

techniques. The imperfect size estimation generates crisis in software

development process of modern software. This proposed novel technique

called MM which gives new strategy for determining size of modern

software.

MM is an Indian metrics, which is used to find size and complexity

of software in analysis phase of SDLC. The MM is determining size of

software based on user and developer views in Function Point Analysis

(FPA) and International standards. MM is an ad hoc method for

measuring the size of modern software system irrespective of its

programming language, methodology, organisation and other physical

parameters. The MM gives a successful way of measuring size of modern

software.

1.1 SOFTWARE DEVELOPMENT PLANNING

The success factors for software are faster in development, cheaper

in cost and better in quality. The success of software development process

depends on good planning and dynamic management (Cigdem et al 2009).

The systematic software development process follows analysis, design,

coding, testing and maintenance phases in sequential, concurrent or divide

and conquers fashion. The analysis phase captures all requirements, then

construct initial business model and finalize plan to develop software

project. The process to plan a project starts with an assessment of the

constraints that affects the project (Barry 1981). It requires a delivery date,

overall budget, staff, etc. These requirements are carried out by combining

the project parameters like its structure, size and distribution of functions.

4

The following algorithm shows the sequence of steps followed for project

planning (Galorath and Evans 2006).

To identify the project requirements.

i. To do the feasibility study of the project variants.

ii. Explain all the intermediate steps and outcomes of the

project.

iii. The following loop is executed until the project is

completed.

a. Define the schedule of the project.

b. Perform the activities based on schedule.

c. To check the progress of the project.

d. Update the parameters of project.

e. Revise the schedule.

f. To check with requirements and outcomes.

g. If (not an actual solution) then

Start the technical reviews.

 End if

End Loop

The above stated project planning algorithm gives the importance of

initial assessment of project parameters, which are used for setting

realistic targets towards project delivery. The failure of many large

software projects highlights the problem of poor planning and estimation

of project parameters (Robert et al 2008).

5

1.1.1 Activities during Software Planning

The major activities in a project planning stages are assessing or

estimating project parameters, resources capturing and project scheduling

(Mehwish and Farooq 2006). The Figure 1.1 shows these activities in

detail.

Figure 1.1: Major Activities in Project Planning

 Estimation is the process of goal setting, which forms the basis of

quantifying the resources to accomplish certain goals based on the clearly

identified assumptions (Henry 2008). Size estimation is the

predetermination of the size of final work product. Size is the basic

measure to calculate other project factors.

Effort

EstimationEstima

Cost Estimation

Development Time

Resource

requirements

Project Scheduling

Size Estimation

6

1.1.2 Specific Quantities to Estimate and Measure during the Life

Cycle of Project

 The COCOMO of Software Engineering Institute developed for

software systems is recorded that the following quantities to be measured

during the lifecycle of the project (Angelica 2004).

 Effort(Events)

 Staff(Count, Expertise and Knowledge, Business)

 Time(Period, Agenda, Progress)

 Costs(Workforce)

 Hardware and software resources used for development and

test

 Performance (Ability, Correctness, Speed, Time)

 Quality (Conformance to necessities, Reliability, Security,

Data Veracity)

 Price and total proprietorship cost.

 Size or Amount (Generated, Altered, Acquired)

The primary quantity of the list mentioned above is size. It is directly

or indirectly employed with other measures of software development

process. The software industry has a lot of software sizing methods and

techniques. The methods are giving ways to do the estimates, whereas the

techniques state the procedure to do the estimates of a particular method.

During project planning, the above said parameters are quantified other

than performance and quality.

7

1.2 ABOUT SIZING APPROACHES

 Software size is a key factor in determining the quantity of time, cost

and effort that are needed to develop software systems. The success of any

software project mostly depends on the efficient estimation of project

effort, cost, and time. Estimation helps a software developer in setting

realistic targets for completing the project in a successful way (Mehwish

and Farooq 2006).The software industry uses various sizing techniques.

They are Lines of code, Function points, Feature points, Use case points,

Object points, Internet points; expert based Expert judgment, estimation

by analogy, Delphi technique, etc. (Richard 2005). These techniques do

not effectively support to determine the size of Modern Software system

and leads to affect all the estimates. The wrong estimates lead

imperfectness, loss and customer dissatisfaction.

1.3 MODERN SOFTWARE SYSTEM SIZING TECHNIQUES

Innovation in software technology has tremendously shaped our

modern human life at every place. Every day, the new software

technologies are emerging and millions of software is developed. The

modern technologies are giving abundant to the people for their fertile

living. In this digitalized living environment, software and internet are

playing vital role in the dynamic face of the world.

The calculating machine is enhanced into governance machine.

Millions of people are working with Information Technology (IT) and IT

enabled services. Regulations, standardization and authentication are

required in this field for harmonious growth of software industry. Many

8

organizations and protocols are available for monitoring those things. But

the size estimation of the software is one of the challenging issues in

software industry.

Many empirical methods are available to measure the size of the

software. But, it denies giving actual size of modern versatile software

applications (Abran 2006). The existing sizing methods and its metrics are

not sufficient for finding actual size of modern software like web based-

database linked-multi environmental-multi faced- application systems,

embedded system, grid and cloud computing, data mining and data

warehousing, big data, scientific and AI, enterprise resource planning,

service oriented architecture, design, modeling, simulation and E-

commerce systems. Because, the modern software is the amalgamation of

software and other Engineering disciplines. So, a multipurpose technology

is needed for calculating size of software.

The FPA is a sizing technique which is independent of programming

language, development tools, or software development lifecycle methods

used for application (Erika 2012). To uplift the functional values of FPA

will give actual size of modern software. This is a new technique to

measure the size of the modern software known as MM.

MM, is an Indian Metrics (IM) which gives size of modern software

through some basic calculations based on Modern Function Points (MFP).

All the functional parameters are analyzed based on user and developer

perspectives. The cost, size and time are rationally less to the traditional

FPA and it is very simple to calculate.

9

1.3.1 Architecture of Modern Software System

 Modern Software system is a task based analytical package. It gives

solutions to living and nonliving, scientific and super natural, practical and

theoretical, movable and immovable, dynamic and static, variable and

constant, wisdom and folly, imaginable and unimaginable, etc. The

Figure 1.2 shows the major domains of modern software system.

Figure 1.2: Major Domains of Modern Software System

 The modern software system is not a single domain application; it is

the combination of more than one domain. The web servers and internet

facilities developed the efficiency of the software and increased boundary

nil services. The software are used in creating applications, Data Base

Management System (DBMS) packages, websites and services,

networking and internet services, AI, Data Analytics (text, knowledge,

10

scientific and etc.), E-Commerce, Mathematics and Simulations,

Construction and Modeling, Manufacturing and Design, Training and

Sharing, etc. In the modern world, all the applications must follow some

universal standards, institutional system codes, SDLC, social, economic

and political codes (Ferchichi 2006).

 The market for modern software system shows a tremendous

growth every year. But this growth rate varies based on the countries,

which are economically and technically developed and developing. India

is showing an enormous growth in software development and IT based

services.

1.3.2 Necessities for a Sizing Approach in Modern Software System

The Standish Group (Lynch 2009) states that 44% of IT projects were

delivered late and over budgeted. It indicates that the role of project

management has become increasingly more important (Demirors and

Gencel 2004). The International Society of Parametric Analysis (ISPA)

identified the main reasons behind project failures (Eck et al 2009). These

reasons can be summarized as follows:

i. Lack of valuation of the workforce’s talent level

ii. Lack of understanding the necessities

iii. Improper software size valuation

On the whole, many software projects failed because of the

inaccuracy of software estimation and misunderstanding in requirement

11

gathering from the customer or incompleteness of the requirements. These

motivated researchers conduct research on software estimation for better

software size and effort assessment. One of the initial stages of project

management activity is planning. In this stage, the software developers

perform the software size, effort estimation; calculate the budget, schedule

and the number of people required for developing the software.

 Modern software system development is also under crisis because of

the unavailability of appropriate sizing technique (Filip 2007). It leads to

improper size estimation, which affects the project planning process.

Improper planning affects project management in all stages, and that leads

customer dissatisfaction, which affects the goodwill of the organization.

So, the software industries need an appropriate early stage sizing approach

for estimating the size of modern software system. This proposed work

introduces MM approach to the world for estimating the size of modern

software system. It resolves the problems faced during modern software

system development.

1.7 SUMMARY

Software size estimation is one of the most important phases in the

software project management. To estimate the size of the software at the

time of project planning gives good budgeting and delivering. The modern

software system is an amalgamation of applications, Database

Management Systems, web pages, networking and its securities,

manufacturing and designing, construction and modeling, mathematics

and simulations, E-commerce, data analytics and artificial intelligence.

12

So, the existing techniques are not opt for finding the actual size of the

modern software.

A novel method, Modern Metrics is proposed for finding the size of

the modern dynamic software system. It will overcome all the pitfalls of

existing software size estimation techniques.

13

CHAPTER 2

SOFTWARE SIZE ESTIMATION TECHNIQUES

To analyze the productivity of software and developing team; it is a

major issue for International Software Engineering research community.

Because of the size of software, it is playing a great role in the estimation

of productivity. Many researches are carried over by different scholars in

different time and environment for estimating the size of software. They

developed many innovative techniques and published. In it, some are

domain centric others are generalized for software size estimation. The

“literature review”, in this chapter is presented in three stages based on

their applications. All existing sizing techniques and their determined

capabilities are reviewed in first stage. In the second stage, the

significance of software size estimation and the software project planning

activities such as effort, time and cost is observed. The third stage of

literature review highlights on modern software system and its application

domains.

2.1 SOFTWARE SIZING TECHNIQUES

After the Second World War, in-between 1945 and 1955, the first

generation computers were emerged for doing the scientific calculations.

The programs developed at this time are mainly in machine language and

some of the programs in assembly language. The size of the software was

few hundreds to some thousands of lines of code. The format and style of

all the programs were same. Hence, lines of code were the main factor for

determining the size of software. According to Capers Jones (2007),

14

productivity and quality are measured based on lines of code. After 1950’s

some powerful procedure oriented languages like FORTRAN, COBOL

and BASIC emerged. It has changed the history of computer science.

These high level languages replaced machine language and assembly

language bringing in the changes in software development field. File

formats and syntaxes varied from one programming language to another.

The lines of code varied from one developer to another and one language

to another. Finally, at the end of 1950’s, the lines of code are concluded

as not the apt method for estimating the size of software.

To overcome the problems of lines of code, the Expert Judgment

technique was proposed by Helmer of RAND Corporation. In this method,

the size is estimated based on the views of an expert or group of experts

(Richard 2005). The expert judgment method is good for scientific and

analytical applications. The end user perspectives are not deliberated in

this estimation technique.

In 1969, the Software Science Metric was developed by Halsted. It

calculates the size of software based on number of operands and operators

present in the application. It is good for mathematical and scientific

applications. It is not good for general purpose software programs

(Capers 2010).

After 1960’s, computers entered into the commercial market like

banking, manufacturing, etc. It has increased number of lines from few

thousands to some millions. But quality and reliability of the software

increased. Around 30% of effort and time is reduced in the development

process; but more than 40% of effort and time increased in debugging and

15

testing process (Capers 2008). A new engineering study for computer

emerged in the entire world. Software developers and industries increased.

Software industry turned into different fields like research, applications

and entertainment. Thousands of new applications were developing all

over the world with different programming languages. This, multi-faced

environment challenged many irremovable factors like time, quality, size,

cost, etc. To solve these industrial problems, many new proposals and

solutions emerged in the industry. IBM was one of the leading industries

that tried to solve the issues.

Allan Albrecht (Capers 2010), a well-known IBM researcher

introduced a new metric for measuring the size of software known as

function points in 1979. It has five functional units, they are, inputs,

outputs, inquiries, logical files and interfaces. It allowed the interaction of

user with the system at the development process itself.

To do the sizing process of software, many new and innovative

techniques are emerged in general purpose and special purpose manner.

They are classified in three different categories as: code based, function

based and expert based (Gustavo 2011).

The lines of code and Halsted’s Software Science are important code

based techniques. In these methods, number of lines of source code is the

key factor for determining the size of software. It was good for first

generation programming languages.

The methods like Expert Judgment, Delphi, Pattern Matching, Linear

Method and Estimation by analogy are important expert based techniques

16

(Hughes 1996). An expert or a group of experts will determine the size of

the software. The interaction of user is restricted in this method.

Function Points, Feature Points, Use Case Points, Object Points,

Internet Points, Common Software Measurement International

Consortium (COSMIC), Backfiring Function Points, 3D Function Points,

De Marco Function Points, Function Point Light, Full Function Points,

International Function Point User Group (IFPUG) Function Points,

Netherlands Software Metrics Users Association (NESMA), Total

Metrics (Australian Metrics), Web Object Points and Story Points are the

important function point based generalized and particularistic software

size estimation techniques (Gopalaswamy 2013). These methods gave

importance to the user in the software development process.

2.2 SOFTWARE PROJECT MANAGEMENT (SPM)

ACTIVITIES

Mehwish and Farooq (2006) studied the concepts of software cost,

effort and size estimation and suggested that the existing techniques are

not giving 100% accuracy in estimation. But the proper way of estimation

using the existing methods must increase some accuracy in measurement.

The size estimation process and other findings like cost, effort, skill and

time must be derived at the analysis phase. Then only the software will be

developed on its allocated time period. The existing methods are not good

for analysis phase size estimation.

17

Mahir Kaya et al (2011), signifies, “software size” is essential for

estimating cost and effort of the system. Therefore, earlier the estimation

of size and earlier the increase in efficiency of software management.

Daniel et al (1999) studied various issues of software size estimation

and suggests that single method is not good for estimating software.

Existing size estimation techniques are domain centric. It is not

considering environment and social issues of the developing unit. So,

innovative techniques must be developed for size estimation of software

product.

Barry (1986) states that, “The biggest difficulty in using today’s

algorithmic software cost models is the problem of providing sound size

estimates”. That means parameters and metrics are not sufficient for doing

the software sizing.

Zia et al (2010), in the study on Graphical User Interface (GUI)

applications states, the current estimation techniques are not having the

metrics to measure component based software applications and the

existing methods produce wrong results in the estimation. So, new

methods required for component based software applications.

Forhad Rabbi et al(2009), in the study on function point size

estimation techniques suggests, software industry is not young, it is

matured, it extends its wings to all the sectors. So, the existing standard

FPA methods like ISO 19761: COSMIC FPA (2003), ISO 20968: Mk II

(2002), ISO 20926: IFPUG 4.1 FPA (2003) and ISO 24570: NESMA

(2005) are not good for modern software.

18

Edilson and Rosely (2003), suggests that the key factor determining

the cost, time and effort is size of the software. Linda (2006) states, in

software, effort, schedule and cost estimated based on size of software.

The LOC and FPA based methods are not sufficient for measuring actual

size of the modern software. Steven Fraser et al (2009) suggested good

and poor estimation of size is affecting quality, cost, time and reliability.

Daniel (1999), in his study he specifies, many methods are available

in the industry for measuring the size of the software but till now the

accuracy in estimation is not giving by any existing methods.

Iman and Siew (2009) said, early stage of size estimation is the high

performance of software size estimation. But the existing techniques are

not doing it well.

The comparison of various sizing techniques and its features are

listed in the Table 2.1(June 1992).

19

Table 2.1: Sizing Techniques and its Features

Features
Sizing Techniques

LOC FPA Feature Point Use Case Point Object Point Internet Points

Inputs and

Outputs
No

Important

Functional Units

Important raw

Feature Point

Actor

interaction

Points

No No

Logical and

Interface Files

Counts the lines

of code

Important

Functional Unit

Important raw

Feature Point

Not considers

all logical files

All the logical

files are

considered

Considered in

the form of

hyperlinks

Web Pages
Considers the

lines of code
No No No No Yes

GUI No Outputs only No No Outputs only No

Multimedia No No No No No
Considers in an

external file

Graphics No No No No No Yes

Reusability No Yes No No Yes No

Text
Considers

number of lines
No No No No

Considers

number of lines

DBMS Support No No Yes No No No

Data

Communication
No

Supports in

Complexity

Adjustment

Factor

No No No No

Internet and

Securities
No No A little No No Yes

20

The popular effort and cost estimation models are COCOMO (Barry

1981), Software Lifecycle Management Model (Putnam 1978), Function Point,

Use Case Points (Karner 1993) and SEER-SEM (Galorath and Evans 2006).

The Delphi technique is used to provide communication and cooperation

among the experts (Dalkey and Helmer 1963). These models also used the size

as the base factor.

From the above study, software size estimation is highly essential for

software development process and the existing methods are not sufficient for

measuring the software size perfectly.

2.3 MODERN SOFTWARE SYSTEM

The machine language codes of computer software are changed into high

level language codes. The high level language codes are changed into object

oriented language codes. The object oriented language codes are changed into

GUI applications. The GUI applications are merged with network, internet and

DBMS to form a new system known as modern software.

The evaluations of modern software based on its technological units are

listed in the Table 2.2.

21

Table 2.2: Evaluation of Modern Software

S.

No
Technological Unit 1980-1990

1990-

2000

2000-

2010

2010-till

now

1 Procedure Oriented Very High High Less Very Less

2 Object Oriented Less Medium High Very High

3 Networking Support Less Medium High Very High

4
World Wide Web

Support
Less Medium High Very High

5 File Handling Very High High Medium Medium

6 DBMS Very Less Medium High Very High

7 GUI Very Less Medium High Very High

8
Object Linking and

Embedding
Very Less Less Medium High

9
Heterogeneous

Environment
Very Less Less Medium High

10
Distributed

Computing
Very Less Less Medium High

11 Parallel Computing Very Less Medium High Very High

12 Cloud Computing Very Less Less Medium High

13

Knowledge Based

(Big Data, Data

Mining, etc.)

Very Less Less Medium High

14 External Input High Medium Less Very Less

15 External Output High Medium Less Very Less

16 External Inquiry High Medium Less Less

17 Internal Logical Files Less Medium High High

22

S.

No
Technological Unit 1980-1990

1990-

2000

2000-

2010

2010-till

now

18
External Interface

Files
High High Medium Medium

19 Internal Input Less Medium High High

20 Internal Operations Less Medium High Very High

21 Indexed Data Less Medium High High

22
Multiple form of

Outputs
Less Medium High High

23
Multi-valued

Function Points
Less Less Medium High

24
Dependent Function

Points
Less Less Medium Medium

25
Composite Function

Points
Less Less Medium Medium

26
Service Oriented

Architecture
Less Less Medium Very High

27
Enterprise Resource

Planning
Less Less Medium Very High

28 AI Less Less Medium Very High

29 Data Analytics
Less Less Medium Very High

30 Standardization
Less Less Medium Very High

The above study in Table 2.2 explains that the modern software is not a

single unit, but it includes all the existing technologies of the modern world and

the novel requirements of the end user.

MM, is an Indian Metrics which will give the actual size of modern

software through modern function points. It analyses all the functional

parameters based on user and developer perspectives. Its cost, size and time are

23

rationally less to the traditional Function Points (FP). So, for calculating the

size of modern software system, the existing popular sizing approaches are

inefficient.

2.4 LIMITATIONS OF EXISTING SYSTEM: FUNCTION POINT

ANALYSIS (FPA)

Based on the studies with the existing FPA methods, the following

drawbacks are identified. They are,

1. The accuracy in function point calculation is very difficult for

modern software. As on IFPUG study, defects per FP are 4.5.

2. Internal Operations like Multifaceted algorithms and heavy

calculations that are portion of a transaction’s processing rationality

are not distinctly considered as portion of the functional sizing.

3. The choice based selection (e.g. if structure, case structure) does not

get extra size.

4. FP merely reflects communications among the (external) user and the

application. Communications between several internal portions of

the application are not measured by the FP model.

5. Relocation of User Interface essentials without adding / removing /

modifying some of them is not encompassed in the sizing method.

6. If the similar result is generated in several presentations or models

(e.g. MS-Excel and PDF), no extra size is considered for the several

models (i.e., only one model is comprised for the size estimation).

7. The database or text files does not present in the FP count.

24

8. The trial versions and model versions of the software does not

present in the FP count. It is reducing the effort of the developer.

9. Internal Inputs, Indexed and List data is not getting importance in the

FP count.

10. The Trivial Function Points like Multi Valued FP, Dependent FP and

Composite FP are not present in the FPA calculations.

11. The cost for estimating FPA is high (estimation cost per function

point is 4$ to 8$). Very large scale projects are not estimated using

FPA method.

12. The CAF of the existing FPA must be updated.

a) The indexed data, list values and choices must be considered and

its influence must be calculated in CAF.

b) The multiple forms of Outputs and its influences must be analyzed

in the CAF.

c) The number of Operating Systems, Programming Languages,

DBMS, Web tools and drivers used in the system must be

analyzed and to find out its influences.

d) The various topologies, networks, servers and its software must

be analyzed and measure the influence of it in the system.

e) The various SDLC models must be analyzed and find the

influence of it in the system.

f) The political, economic and social condition of the nations which

will be affected in the system must be analyzed.

g) The influence of International Standards used in the system must

be analyzed.

25

2.5 COMPARISON OF EXISTING SIZING TECHNIQUES

The comparison of all software size estimation techniques are present in

the following Table 2.3.

Table 2.3: Comparison of Sizing Techniques

S. No Sizing Approaches Author and Year Application Focus

1 Lines of Code 1950’s
Any Application but

focusing on code

2
Expert Judgment

Helmer - 1959

Any kind of application but

Expert centralized

3
Software Science

Metric

Halstead M. H. -

1969
Scientific Application

4
Function Point

Analysis

Allan Albrecht -

1979

MIS like business

Applications

5
DeMarco “Bang”

Function points

Tom DeMarco -

1982

System software, Scientific

software

6
Mark II Function

points

Charles Symons -

1983
System software

7
Backfiring Function

points

Capers Jones -

1984

Mathematical conversion

from source code statements

to equivalent function points

26

S. No Sizing Approaches Author and Year Application Focus

9 SPR Function points

Software

Productivity

Research - 1985

MIS like business

Applications and is using

Backfiring concept.

10
IFPUG Function

points

International

Function Point

User Group - 1986

Business Applications. It is a

regularized form of original

function points developed by

Albrecht of IBM

11 Feature Points
Alan J. Albrecht

and his team - 1986
Real time systems

11
Engineering Function

points

Donald Umholtz

and Arthur Leitgeb

-1994

Scientific Application

12 3D Function points
Scott Whitmire -

1994

Scientific and Real time

software

13 Object Point method
Rajiv D.Banker -

1994
GUI based Applications

14
NESMA Function

points

Netherlands

Software Metrics

Association - 1995

MIS like business

Applications, Real time

systems

15 Data point Method 1997 Database sizing

16
COSMIC Function

points

Common software

Measurement

International

consortium - 1998

Real time and Embedded

software

27

S. No Sizing Approaches Author and Year Application Focus

17 Story points 1999
Agile based software

Development

18 Web object points
Donald Reifer -

2000
Web Applications

19 Use Case points

UML based

software sizing

approach

introduced in 2003

Object Oriented Software

20
Function points

‘Light’

David Herron of

David consulting

group

MIS like business

Applications

2.6 SUMMARY

The existing sizing techniques like Lines of Codes, Function Points,

Feature Points, Use Case Points, Object Points, Internet Points and all other

size estimation techniques are domain centric. But, the modern software is

multi domain and it has complex architecture. So, a novel multifaceted and

simplified sizing approach is required for finding the size of modern dynamic

software system. The Function Point Analysis is an effective method for

measuring the size of application software based on user perspectives. To

update the existing FPA with some functional units, complexity adjustment

factors, software metrics and values will give an effective approach for finding

the size of modern software system.

28

CHAPTER 3

SIZING APPROACHES FOR MODERN

SOFTWARE SYSTEM

Software size denotes the quantity of software. Software size, is a key

factor in determining the amount of time and effort that is needed to develop

software systems and the modern software system development also has no

exception. The success of any software project largely depends on the effective

estimation of these attributes (Juan 2010). Estimation helps in setting the

realistic targets to complete the project. The basic element for estimating

everything is size. Sizing is the prediction of coding that is needed to fulfill the

requirements. Every object in the real world can be measured regarding some

units. Software size is measured in terms of number of lines, counting

functions, counting features, a number of pages of user documentation, etc.

(Kjetil 2003). The software industry uses various sizing techniques. They are

lines of code, function points, feature points, use case points, object points,

internet points, etc. They do not support effectively to determine the size of

Modern Software system which leads to inaccurate estimates. The inaccurate

estimates lead to incompleteness, loss and customer dissatisfaction. This

chapter presents the popular sizing techniques and their inabilities in sizing and

also the necessities of new sizing approach for modern software system.

29

3.1 ESSENTIALS OF SIZING APPROACHES

The process of quantifying software is called software sizing. Sizing and

estimation play a major role in software development, which leads to complete

the project in good fashion (Kotonya 1998). Figure 3.1 illustrates the estimating

principle for project management.

Figure 3.1: The Estimating Techniques for Project Management

 The rate of software requirements may change depends on the following

factors (Luigi 2011),

 The knowledge of the development group in similar applications.

 The process or methods used to develop the project.

 The programming language or languages utilized

 The presence or absence of reusable artefacts.

 To develop a project, whether the Development tools are used?

 These attributes may orient to personal, technologies, tools or

programming environment. By using size and attributes, effort, cost, schedule

Project Size
Project

Attributes

Estimates
Schedule

 Effort

 Costs

Deliverables

Effective Project

Planning and

management

30

and other deliverables are estimated. These estimates are supported by effective

planning and management of software projects. So, size and sizing approaches

are essential.

3.2 BASIC PROCESS TO ESTIMATE THE SIZE

 The following steps needed for estimating the size of software in a linear

way (Richard 2005).

i. Define your size measure.

ii. Identify all items to be built.

iii. Estimate the size of each items using sizing approaches

iv. Add up sizes of each item.

v. Validate the results

vi. Repeat steps ii - v, if appropriate.

3.3 CHOOSING A SIZE MEASURE

 While choosing or inventing a new sizing approach, the following

characteristics should be considered. The characteristics of a good size measure

are as follows (Humphrey 2004).

 It is correlated to the development effort expected by the engineers.

 It is autonomous of the knowledge used.

 It can be estimated at the beginning of the SDLC.

 The calculations must be simple.

 The user, developer and organisational perspectives must be present.

31

3.4 SIZING APPROACHES

 Sizing approach denotes a method or technique, which is used to quantify

the size of the software.

 The sizing approaches are broadly classified into three categories. They

are,

 Code based techniques

 Expert based techniques

 Function based techniques

 These sizing approaches are represented in Figure 3.2.

Figure 3.2: Classifications of Sizing Methods

32

 The following section describes the popular sizing approaches in the

Software Industry and their limitations in Sizing Modern Software system.

3.4.1 Code Based Techniques

Lines of Code

 The Lines of Code (LOC) is used from the beginning stage of the

evolution of programming languages. The main objective of LOC is to count

each executable instruction including data definition and the size (Lavanya

2010).

Halstead’s Software Science

 The Software Science developed by Halstead attempts to estimate the

programming effort (Luigi 2011). The measurable and countable properties are

as follows:

 n1 = number of unique or distinct operators that appear in that

implementation

 n2 = number of unique or distinct operands that appear in that

implementation

 N1 = total usage of all of the operators that appear in that

implementation

 N2 = total usage of all of the operands that appear in that

implementation

33

 From these, Halstead defines vocabulary length and other attributes. The

vocabulary of the program is the summation of unique operators and unique

operands. The formula for calculating vocabulary n is given in following

Equation (3.1).

 n = n1 + n2 (3.1)

 Similarly, the length of the program is the summation of the Total

number of operators and total number of operands. The formula for calculating

program length N is given by the following Equation (3.2).

 N = N1 + N2 (3.2)

3.4.2 Expert Based Techniques

Expert Judgment

 Expert or group of experts uses their experience to understand the

proposed project, and they make estimation (Najberg 1984). The original

technique arose from work done at the RAND Corporation in 1950’s and

matured in the following decade. The following steps are used for estimation.

Steps

1. Coordinator gives each expert a requirement and a valuation form.

2. Coordinator organizes a group meeting in which the experts deliberate

estimation problems with the coordinator and each other.

3. Experts fill out the forms anonymously.

34

4. Coordinator prepares and distributes the summary of the estimation on an

iteration form.

5. Coordinator calls a group meeting to discuss the expert’s points, where

the estimates varied widely.

6. Experts fill out the forms again anonymously and step 4 – 6 are repeated

to get an appropriate conclusion.

Delphi Technique

 Delphi cost estimation technique tries to overcome some of the short

comings of the expert judgment. Using Delphi technique, the size and amount

of effort that is required to perform the tasks are estimated properly. There are

two Delphi versions. They are Narrow band Delphi and Wide band Delphi. In

narrowband Delphi, estimators never meet. Every expert in the panel gives the

opinion without discussing with other experts. In Wideband Delphi, estimators

meet face to face. Every expert may discuss together and gives the opinion.

Estimating Size by Analogy

 Based on the size of similar projects that is developed in the past helps

to estimate the size of new software. For this estimation, historical data and

experts are necessary. Sometimes scaling concept is also used. This kind of

guessing not supported in modern software system sizing because of complex

parameters (Noureldin 2010).

35

Pattern matching

The same analogy concept is used in functional size measurement called

Pattern matching and function points. In pattern matching approach, the

application to be sized is compared against the catalogue of historical projects

and matched against similar projects. There are two critical topics requires for

the pattern matching approach to be effective. They are the large collection of

historical data and a formal taxonomy of software projects to guide the search.

The taxonomy for pattern matching states that during pattern matching,

elements like project nature, project scope, project class and project type in the

function point approach has to be considered.

3.4.3 Function Based Techniques

FPA

FPA is the standard metrics for measuring functional size of a software

system (Paul 2007). The function point was first defined by A.J. Albrecht at

IBM in late 1970’s. The FPA is used to predict the effort estimation of the

software project in the beginning stage of the life cycle. It measures the

complexity of the functions and overcomes the difficulties of Lines of Code.

FPA helps the developers and users to quantify the size and complexity of

software application functions in a way that is useful to software users. The

diagrammatic representation of functional units of FPA is in the Figure 3.3

36

Figure 3.3: Functional Units of FPA

There are two types of functionality in FPA: The first one is data functions

to count the size of the data part of the project and the second one is

transactional functions to count the size of the transactional functions of the

project.

Unadjusted Function Point - UFP

UFP- Unadjusted function point specifies the total number of function

points depending on the following two factors. They are Data functions and

Transaction functions. It means the counting of all the five classes namely

External Interface Files, Internal Logical Files, External Inputs, External

Outputs and External Queries.

Data Functions

Internal Logical File (ILF): ILF is a user identifiable group of logically

related data or control information that is maintained within the boundary of

the application.

37

External Interface File (EIF): EIF is a user identifiable group of

logically related data or control information referred to the application, but

maintained within the boundary of another application.

Transaction Functions

There are three types of transaction functions. They are External Input,

External Output and External Inquiry.

External Input (EI): EI are received by the user to the software, which

provides the application-oriented data.

External Output (EO): Things are provided by the software that goes

with the outside systems like screen data, report data, error message and so on.

External Inquiries (EQ): Inquiries may be the command or requests that

are generated from outside. It is the direct access to a database that retrieves the

information.

Table 3.1 shows the computing procedure for Unadjusted Function Points

(UFP) for the five categories of data and transaction functions.

38

Table 3.1: Unadjusted Function Point Calculation

Function

Type

Weight by Functional

Complexity
Total FP

 EI

Low A * 3

Average A * 4

High A * 6

 EO

Low A * 4

Average A * 5

High A * 7

EI

Low A * 3

Average A * 4

High A * 6

ILF

Low A * 7

Average A * 10

High A * 15

EIF Low A * 5

Average A * 7

High A * 10

Total number of UFP

 Where, A - Number of functional units of that category present in the

software.

After calculating the unadjusted function point, the next step involves is

gathering the information about the environment and complexity of the project

or application. The General System Characteristics (GSC) are a scale from 0 to

5 (degree of influence) as shown in Table 3.2.

39

Table 3.2: General System Characteristics

S. No General System Characteristics

1.
There are communication facilities to aid in transferring or

exchanging the information with the application or system.

2. Handling the distributed data and processing functions.

3. The response time or output required by the user.

4.
The heavy use of the current hardware platform where the

application is executed.

5. The transactions that are executed daily, weekly, monthly, etc.

6. The On-line percentage of the information is entered.

7. The end-users efficiency to design the application.

8. Updating the ILF’s through On-Line Transaction.

9.
The application provides extensive logical or mathematical

processing.

10. The application is developed to meet one or many user’s needs.

11. The difficulties of the conversion and installation.

12.
The effective and automated are a start-up, back-up, and

recovery procedures.

13.
The applications are specifically designed, developed, and

supported to install at multiple sites for multiple organizations.

14.
The application is specifically designed, developed, and

supported to facilitate change.

 After, all the 14 GSC’s, the Complexity Adjustment Factors (CAF) is

calculated. The formula that is used to calculate the CAF using Equation (3.3)

CAF = 0.65 + (0.01 ∗ ∑ Cn
i=0 i) (3.3)

Where,

 n = 14 GSC’s.

 Ci - Complexity Adjustment Factor of C1 to Cn.

40

 After determining the value of UFP and CAF, it is necessary to compute

FP. The formula is calculated in the final FP count, which is given in the

Equation (3.4).

 FP = UFP ∗ CAF (3.4)

Advantages

i. It calculates the size in the users’ perspective.

ii. The FP metric doesn't correspond to any actual physical attribute of a

software system (such as lines of code or the number of subroutines).It

is useful as a relative measure to compare projects, measure productivity,

and estimate the amount, develop effort and time needed for a project.

iii. FP can be applied early in the software development lifecycle.

iv. It is independent of programming languages.

v. It is a good sizing technique for the application programs in 1980’s.

Limitations of FPA in the sense of Modern Software System

i. FPA focuses on the computation part of an application. In 1980’s, an

application system had a full computational part. So, it is focused on

external inputs, outputs, inquiries, internal logical files and External

interface files. But Modern Software system has a huge volume of the

document. The learning content may express in terms of video, audio,

simulation, animation or textual document. Sizing of this part was not

mentioned in FPA.

41

ii. It is a count-based method. If the count of each component is high then

it states that the complexity is high.

iii. It is not well suited to non-Management Information System

applications, especially modern software system like web applications.

Feature Points

 It was the extension of FPA designated to deal with different kind of

applications such as embedded system, real-time system, system software, etc.

FPA never considers the complexity of algorithms involved in each application.

To overcome that problem, feature point method was introduced (Ursula 2003).

The complexity of algorithms defined in terms of the number of rules required

to express that algorithm. The formula for calculating Feature Points (FuP) is

given in Equation (3.5).

 FuP = Raw Feature Points * CAF (3.5)

Determination of Raw Feature points

 Count all inputs, outputs, files, inquiries, algorithms and interfaces present

in a software system and multiply with the average weighting factors of the

future type. The sums of all values are known as raw feature points. The

Table 3.3 assists for calculating raw feature points.

42

Table 3.3: Calculating Raw Feature Points

Feature Type Average Total

No. of Inputs B * 4 =

No. of Outputs B* 5 =

No. of Files B * 7 =

No. of Inquiries B * 4 =

No. of Interfaces B * 7 =

Count the number of

Algorithms

B * 3 =

Total Raw Feature Points:

Where, B - Number of raw future points of that category present in the

software

Determination of CAF

 The complexity adjustment factor is calculated based on the two

environmental factors. The range of influence of each factor is from 1 to 5. The

environmental factors are the logic values and data values. Logical value is

assessed based on the complexity of algorithm or logics used in the application.

The data value is assessed based on the complexity of data used in algorithm

or logics used in the application. The Table 3.4 assists to find the environmental

factors of an application. Choose any one from each factor category.

43

Table 3.4: Environmental Factors

Environmental Factors and values

Logic Values (select one)

Simple algorithms and calculations 1

Majority of simple algorithms 2

Average complexity of algorithms 3

Some difficult algorithms 4

Many difficult algorithms 5

Data values(select one)

Simple Data 1

 Numerous variables but simple

relationships

2

Multiple Fields, Files and Interactions 3

Complex file structures 4

Very complex files and data relationships 5

 The sum of logical value and data value provide environmental factor.

Environmental factor ranges from 2 to 10. For each range of environmental

factor, specific CAF is assigned. The Table 3.5 shows the CAF value for each

range of environmental factor.

Table 3.5: CAF Value for Environmental Factor

Environmental factor CAF

2 0.6

3 0.7

4 0.8

5 0.9

6 1.0

7 1.1

8 1.2

9 1.3

10 1.4

44

 The exact feature point of the system is the product of the new feature

point and CAF.

Advantages

i. It is an excellent approach to size the algorithmically intensive system.

ii. FP can be applied early in the software development lifecycle.

iii. It is independent of programming languages. It performs well in the

embedded system and the real time system sizing.

Limitations of Feature points in the sense of Modern Software System

i. It never considers other technical factors that influence the execution of

Modern Software system.

ii. It never considers the database and networking support that is needed for

the application.

iii. It considers only the simple entities and algorithms used by the system.

iv. It never consider video, audio, simulation, animation and their worth

fullness.

Use Case Points (UCP)

 Use case point was introduced in the year of 1993 by Karner of Objectory.

It is an extension of FPA. It supports sizing in the early stage itself. The

following Equation (3.6) is used for calculating UCP.

45

 UCP = UUCP + TCF + EF (3.6)

Where,

 UUCP - Unadjusted Use Case Points.

 TCF - Technical Complexity Factor

 EF - Environmental Factor

Determination of Unadjusted Use Case Points (UUCP)

 UUCP can be calculated based on the unadjusted actor weight and

unadjusted use case weight. Identify actors and its complexity from each use

case of an application system. Find the weight because the weight may be 1, 2

or 3 based on the actor complexity that is simple, average or complex. Sum the

weight for the actors in all use cases to obtain the Unadjusted Actor Weight

(UAW). Similarly, identify the use cases and assign weight 5, 10, 15 based on

the complexity. Sum the weight for all use cases to obtain the Unadjusted Use

Case Weight. The Equation (3.7) is used for calculating the UUCP.

 UUCP = UAW + UUCW (3.7)

Determination of Technical Complexity Factor (TCF)

 The technical complexity of the product can be calculated based on the

degree of influence of thirteen technical factors. The Table 3.6 describes the

technical factors and their weight. It is similar to the CAF calculation of FPA.

46

Table 3.6: Technical Factors and their Weight

Technical factor Weight

Distributed system 2

Response or throughput

performance objectives
2

 End-user efficiency 1

Complex internal processing 1

Reusable code 1

Easy to install 0.5

Easy to use 0.5

Portable 2

Easy to change 1

Concurrent Processing 1

Include security features 1

Provide access for third parties 1

Special user training facilities

are required
1

 The degree of influence of each factor ranges from 0 to 5. For each factor,

multiply the degree of influence by the weight, and sum the products to obtain

the Technical Complexity Sum (TSUM). The Equation (3.8) is used for

computing TCF.

 TCF = 0.6 + 0.01 * TSUM (3.8)

Determination of Environmental Factor (EF)

 It is calculated based on eight environmental factors, which addresses the

skills and training of the staff and requirement stability. The rating of influence

ranges from 0 to 5. Multiply the rate of influence with the weight and sum them

to obtain Environment sum (Esum). The Table 3.7 shows the environmental

factors and weight.

47

Table 3.7: The Environmental Factors and Weight

Environmental factors Weight

Familiar with rational unified process 1.5

Application experience 0.5

Object oriented experience 1

Lead analyst capability 0.5

Motivation 1

Stable requirements 2

Part-time workers -1

Difficult programming languages -1

The Equation (3.9) is used for computing Environmental Factors (EF).

 EF = 1.4 − 0.03 ∗ Esum (3.9)

Advantages

i. It supports for estimating the size of software in the first phase of

development itself.

ii. It is good for the application that is generated by using object oriented

methodology.

Limitations of Use case points in the sense of Modern Software System

i. Use case provides the initial view of the business model. But it is not

much detailed and using this we can’t provide exact estimates.

48

ii. It counts the number of actors and use cases involved in an application

system and identify the complexity. But it never identifies the

implementation level difficulties.

iii. Use case complexity is assessed based on number of transactions. It

never considers the weight of code or inner part of use case

iv. Sizing of the document part of Modern Software system is not

mentioned.

v. Simulation, animation, video and audio specifications and their

complexities are not assessed.

Object Points

 Object points were introduced by Banker in 1991. It was object count

instead of function count. Here the objects denote rule set, 3GL module, screens

and reports. These objects are closer to work done by the developers. This

approach meshes well with projects that use integrated computer aided software

engineering environments to develop software (Renjeev 2007).

Determination of object points

 Count all instances of each object type. Each object is assessed with the

complexity weight. Sums up the complexity weight of all objects to get the

Object Points (OP). Multiply OP by a Reuse Factor (RF). Reuse Factor is

expressed in percentage 10% corresponds to the value of 0.1 and the New

Object Points (NOP) is calculated using the following Equation (3.10).

 NOP = OP ∗ (1 − RF) (3.10)

49

Advantages

i. Good for GUI based applications.

ii. It highly considers for reusability.

iii. It is suitable for object oriented applications.

Limitations of object points in the sense of Modern Software system

i. Modern Software system is also a GUI based application. Instead of

screens, reports, and code list of special objects, there are animation,

simulation, video, etc. Object point suggests no way for sizing those items.

ii. Modern Software system is a web-based application. It is accessed by a

variety of students from the geographically distributed area. So, multiple

system characteristics have to be considered. But, object point considers

only reusability out of all technical and environmental factors that

influence the system.

iii. This method is not suitable for research and analytics applications.

Other Sizing Approaches

 There is few more sizing techniques are used by some companies based

on their needs (Shukor 2009).

50

Web Points

 Assessing the size of web pages, David Clary introduced this method in

2000. The size is assessed based on the complexity of web page. The

complexity of each web page is considered based on the count of words and

number of hyperlinks. Counting the size of each page and summing them gives

the size of an application. A modern Software system has multiple algorithms

and produces multiple reports. The database and different media files are also

involved. So this sizing technique is not suited for Modern Software system. It

supports only for assessing the size of the small web site.

Web Objects

 It was introduced by Donald Reifer in 2000. Web Objects considers

multiple objects of web pages like building blocks, web components, graphic

files, multimedia files and scripts. It counts all objects and as well as FPA web

objects. It is good for assessing the size of web site, but Modern Software

system is highly more than a website. It is a document rich web application. So,

it is not suitable for sizing Modern Software system.

Backfiring

 Capers Jones of Software productivity research developed a technique in

1984 called “Backfire.” It estimates the size of existing legacy systems by

counting the lines of code in the software product and then multiplying by a

language-specific conversion factor. This technique provides moderate

51

accuracy. It is based on LOC, which could not support in assessing the size of

modern software system.

Object Oriented Size Measures

 Entities that persist in the world are modeled on a software program,

which includes both the application domain and solution domain (Rodrigo

2009). Application objects can be physical things, roles and events. Solution

objects may be architecture elements and software components. The trick to

obtain useful size measure is to stay near the application side. But, application

object provides limited information for sizing. So, it mostly provides an

inaccurate estimate in the early stages.

3.5 RISKS ASSOCIATED TO MODERN SOFTWARE SYSTEM’S

SIZE ESTIMATION

The risks of the modern software system are classified into two broad

categories. They are,

i. Functional Risks

ii. Social Risks

3.5.1 Functional Risks

The functional risks of size estimation are based on the ambiguity present

in the identification of functional units.

52

The Versatile Behavior of Modern Software

The modern software is versatile using distinct programming languages,

operating systems, file formats, topologies, SDLC and application tools. The

functional unit of one software may differ from other software. It may lead to

confusions in identifying functional units.

The Variable Behavior of Functional Units

In the same software, the same functional unit will behave differently in

different modules. It also increases the difficulties for identifying functional

units of modern software systems.

Difficult to Rank Function Points

Ranking of function points is differing from organisation to organisation.

So it increases the confusions in estimating the size of modern software

systems.

Insufficient CAF

The existing IFPUG Function Point size estimation technique uses only

fourteen CAF. It is not competent for sizing modern software systems.

53

Dynamic Function Points

The dynamic behaviour of function points generates difficulties in the size

estimation of modern software systems.

3.5.2 Social Risks

The social risks of size estimation and project management mainly

depends on industrial policies, socio-economic policies, political system, and

universal standards of the client, developer and domain.

Economic and Financial Risks

The economic and financial status of the institutions also affects the

development of software in its estimated period of time as the fund flow is

essential for managing the needs of software development process.

Social and Environmental Risks

The social issues in the society like employees, institutional policies,

working hours and ecological policies also affects the development of software.

It creates major impact on size estimation.

54

Security Risks

The secured transfer and storing of information is highly essential till the

life time of software system. So, efficient algorithms must be developed for

those issues.

National Policies

The national policies of the client and developer may also affect the

development process of the software system.

Universal Standards

The universal standards of software development, employees and

organizational standards also affect the growth of software development

process.

3.6 FINDINGS IN FPA

 The traditional function point estimation techniques were using only five

functional units and fourteen CAF (discussed in 3.4.3). These are not sufficient

for estimating the size of modern software system. The following are the new

functional units and CAF for attaining the accurate sizing of modern software

to an extent.

55

Internal Input

It is an important essential functional unit for modern software. For

example,

void main()

 {

const float pi = 3.14;

int r = 10;

float k;

k=pi * r * r;

printf (“Area = %f”, k);

 }

In the above function, the internal direct assignments (eg. variable r) and

constants (eg. pi) are the examples for internal input. In the traditional FPA, the

internal input is not considered as functional units. Therefore, it will reduce the

size of the software product in FPA.

Internal Operations

The internal operations are not considered in the traditional FPA

estimation. For example,

void main()

 {

56

 Int i,j,k,l;

 printf(“Enter the value of a and b”);

 scanf(“%d%d”, &i,&j);

 k=i+j;

 l=k-i;

 printf(“Value of l=%d”,l);

 }

In the above example, variables ‘i’ and ‘j‘ are EI, variable ‘l’ is EO, but

the internal operation ‘k=i+j’ is not considered as functional unit. The internal

operations are playing very important role in scientific and AI software

programs. To increase the accuracy of modern software size estimation,

internal operations also can be considered as a functional unit for FPA size

estimation process.

Indexed Data

The arrays and lists are very essential data variables for modern software.

But all the indexed values are not getting importance. The indexed data

variables also considered as the single valued variables. For example, in the

existing FPA estimation ‘int a[10]’ will be getting equal weightage as that of

‘int a’. It reduces the effort level of developer at the time of estimation.

Multiple Forms of Output

Nowadays, the modern software are capable to create many forms of

outputs like data report, crystal report, excel formats, GUI formats, database

57

reports, etc. But the existing FPA methods are considering only one format of

output. The exclusion of different forms of output affects the size of the

software system. Therefore, the time and cost constraints are not accurate in the

estimation.

Insufficient Metric Values

The size of the functions and the data handling with the functions are

increasing by time. The existing metric values (low, average and high) are not

sufficient. Hence, we have to add one more very high metric value.

Database and Text Files

The database and text files were not considered in the existing function

point methods. The current technologies like machine learning, data mining,

data analytics and big data are using a large amount of historical and primary

data. The neglecting of database and text affects the actual effort level of the

software system.

Multi-valued Function Points

A variable will act as one functional unit in one function and the same

variable will act as another functional unit in another function is known as

Multi-valued Function Points (MVFP). For example,

void get(void);

void add (int, int);

58

int a,b;

void main()

 {

get();

add(a,b);

 }

void get()

 {

a=10;

b=20;

 }

void add(int a, int b)

 {

int c= a+b;

 }

In the above example, the variables ‘a’ and ‘b’ are as internal inputs in

function get() and as EI in function add(). Similarly, ILF of one function

becomes EIF of another function and EQ of one function is EI of another

function. The importance of MVFP is not considered in FPA method.

Dependent Function Points (DFP)

Some functional units are identified based on some other functional units.

The choice based functional segments are example for DFP. For example,

59

void main()

 {

int a, b, big, small;

printf (“Enter a and b values”);

scanf(“%d %d”, &a, &b);

if (a > b)

 {

 big = a;

 small = b;

 }

else

 {

 big = b;

 small = a;

 }

 }

 In the above example, ‘if’ block and ‘else’ block will be chosen based

on the variables ‘a’ and ‘b’. If one block is chosen then all other blocks are

omitted. The small applications won’t give any impact on its size estimation.

But in the large scale systems, the choices are playing great role in size of the

software. The choices and dependent function points were not considered in

FPA method. Similarly, case () structure also is an example for DFP.

60

Composite Function Points (CFP)

A variable will get the characteristics of different functional units in the

same function is known as CFP. For example,

void main()

 {

int a,b;

printf(“Enter a and b values”);

scanf(“%d%d”,&a,&b);

a=a+b;

b=a-b;

a=a-b;

 }

In the above example, variable ‘a’ and ‘b’ are accepting the

characteristics of External Inputs and Intermediate Results. Similarly, External

Inquiries becomes Internal or External Inputs within the same function. The

composite behaviors of functional units are not discussed in FPA method.

3.7 SUMMARY

 The existing FPA has five functional units and fourteen CAF. These are

not sufficient for measuring the size of modern software system. The functional

risks in Function Point estimations are to rank function points, insufficient

complexity adjustment factors, and dynamic function points. The economic,

financial, environmental, security, national policies, and universal standards are

social risks of modern software.

61

 Internal input, internal operations, indexed data, multiple forms of output,

insufficient metric values, database and text files, multi-valued function points,

dependent function points, and composite function points are some additional

factors affecting the modern software which is not reflected in the existing FPA

method.

 Updating the above factors with the existing FPA method will yield an opt

method for finding the size of modern software system.

62

CHAPTER 4

MODERN METRICS SIZING TECHNIQUE

MM is the proposed sizing technique for modern software which is

based on new metrics and values. MM is a novel approach, that estimates the

size of the software with less cost and time. The modern software mainly does

the extraction, processing of data and value based on decision making. Apart

from the traditional function points like EI, EO, ILF, EQ and EIF, it includes

Internal Input (II), Internal Operations (IO) and Data and Text (DT). It also

recognizes SDLC, updated CAF, trial versions of the software, indexed data,

multiple forms of output, user developer views on system and social, economic

and political laws of the Nation. Therefore, the defects per function point are

reduced by the novel FPA, using MM technique.

4.1 MODERN METRICS

MM is an Indian metrics which will measure the size of a software with

the help of updated functional units of modern software. MM has some simple

calculations for finding the size of modern software. It is not considering

programming language, operating system, development tools, working

environment and other technical factors. Hence, a novice or non-software

professional can easily estimate the size of software.

63

4.1.1 Architecture of MM

The functional diagram of MM includes all the internal and external

function points of a software system. The traditional FPA estimation technique

has only five functional units (EI, EO, EQ, EIF and ILF). But the MM has added

three more functional units (II, IO and DT) and it has eight functional units.

The MM also includes twenty two CAF, whereas the traditional FPA has only

fourteen CAF. The architectural diagram of MM is shown in the Figure 4.1

Figure 4.1: Architecture of Modern Metrics

4.1.2 Functional Units of MM

The functional units of software are the basic element for estimating

the size of software. The functional units are divided into three categories based

on its functional view. They are internal functional units, external functional

units and hybrid functional units. The internal functional units are influencing

64

the system internally and which will not interact with the external factors.

External functional units are influencing the system by external factors or

communications from system to an external factor. The internal inputs, internal

operations and internal logical files are the internal functional units of the MM.

Other functional units like, external inputs, external outputs, external inquiries

and external interface files are external functional units. The data and text is

having the behavior of both internal and external functional units. So, it is a

hybrid functional unit.

 Internal Functional units

a) Internal Inputs: The defined constants and internal assignments of

variables are internal inputs.

b) Internal Operations: A complete cycle of operations in the system

which is not present under any other functional units.

c) Internal Logical Files: It is a supporting software or data present in

the system for executing the system successfully.

 External functional units

a) External Inputs: Inputs given to the system through input devices by

an external factor.

b) External Outputs: The results received from the system through

output devices for an external factor.

65

c) External Inquiries: The external questions raised from the actor

during the execution time for checking the accuracy of the system.

d) External Interface Files: It is a supporting software or data present in

the external system for executing the software successfully.

 Hybrid functional units

a) Data and Text: 8000 words (manual typing speed of a person per day)

in a text document is a functional unit of DT. The DT may not take

part in any operation and it may be tables, historical data, help files,

images or other text documents. It may be both internal and external.

4.1.3 The Metrics of the Functional Units of MM

The metrics of the functional units of modern software is difficult to find

and classify it. Some important functional units of functions are identified and

listed in the Table 4.1.

66

Table 4.1: Metrics of Functional Units

S. No
Functional

Unit
Metrics

1 II Constants, internal assignments and internal keys.

2 IO

Choices, A complete operational cycle which is not

taking part with any other functional calculations,

dynamic effects of web pages, internal algorithms,

array input, output or calculations, the properties and

events assigned to the GUIs, function calling in a

program.

3 ILF
The driver files for other software, header files and

packages.

4 EI

Inputs given through input ports or input statements,

input GUI’s like text box, list box, combo box etc.,

graphics coordinates for a complete diagram (example

circle, line, ellipse etc.) with its properties.

5 EO

The results displayed using output statements, output

devices, output GUIs like label box, list box, text box,

combo box.

6 EQ
The queries generated by the users for the better

operations of the system.

7 EIF
The driver files used for connecting external devices

and remote systems, anchor tags.

8 DT
Tables, text files, image files, help files, data files and

webpage contents.

67

The way of finding the functional units of modern software is explained

in Appendix 1.

4.1.4 Functional Units with Metrics and Metric Values of MM

The eight functional units are ordered according to their availability in a

function. The metrics of the functional units are Low, Average, High and Very

High based on the complexity and time required to complete the operations of

each functional unit. These metrics are otherwise known as effort modifiers of

the software sizing process. The calculations of effort modifiers are present in

Appendix 2. By using a set of inflexible standards the metrics are categorized.

EI Functional Values

The EI of all the functions are identified and tabulated. Then, the EI

functional values are categorized and valued based on its complexity. The

metrics and its values of EI functional values are shown in the Table 4.2.

Table 4.2: EI Functional Values

S. No EI Functional

Values

EI Metrics EI Metric

Values

1 1 to 3 Low 3

2 4 to 5 Average 4

3 6 to 8 High 6

4 >8 Very High 9

If the EI functional value is in-between 1 and 3, the EI metric is low and

its value is 3. If the EI functional value is in-between 4 and 5, the EI metric is

68

Average and its value is 4. If the EI functional value is in-between 6 and 8, the

EI metric is High and its value is 6. If the EI functional value is greater than 8,

the EI metric is very high and its value is 9.

II Functional Values

The II of all the functions are identified and tabulated. Then, the II

functional values are categorized and valued based on its complexity. The

metrics and its values of II functional values are shown in the Table 4.3.

Table 4.3: II Functional Values

S. No II Functional

Values

II

Metrics

II Metric

Values

1 1 to 3 Low 3

2 4 to 5 Average 4

3 6 to 8 High 6

4 >8 Very High 9

If the II functional value is in-between 1 and 3, the II metric is low

and its value is 3. If the II functional value is in-between 4 and 5, the II metric

is Average and its value is 4. If the II functional value is in-between 6 and 8,

the II metric is High and its value is 6. If the II functional value is greater than

8, the II metric is very high and its value is 9.

69

EO Functional Values

The EO of all the functions are identified and tabulated. Then, the EO

functional values are categorized and valued based on its complexity. The

metrics and its values of EO functional values are shown in the Table 4.4.

Table 4.4: EO Functional Values

S. No EO Functional

Values

EO

Metrics

EO Metric

Values

1 1 to 4 Low 4

2 5 to 6 Average 5

3 7 to 9 High 7

4 >9 Very High 10

If the EO functional value is in-between 1 and 4, the EO metric is low and

its value is 4. If the EO functional value is in-between 5 and 6, the EO metric

is Average and its value is 5. If the EO functional value is in-between 7 and 9,

the EO metric is High and its value is 7. If the EO functional value is greater

than 9, the EO metric is very high and its value is 10.

IO Functional Values

The IO of all the functions are identified and tabulated. Then, the IO

functional values are categorized and valued based on its complexity. The

metrics and its values of IO functional values are shown in the Table 4.5.

70

Table 4.5: IO Functional Values

S. No IO Functional

Values

IO

Metrics

IO Metric

Values

1 1 to 3 Low 3

2 4 to 5 Average 4

3 6 to 8 High 6

4 >8 Very High 9

If the IO functional value is in-between 1 and 3, the IO metric is low and

its value is 3. If the IO functional value is in-between 4 and 5, the IO metric is

Average and its value is 4. If the IO functional value is in-between 6 and 8, the

IO metric is High and its value is 6. If the IO functional value is greater than 8,

the IO metric is very high and its value is 9.

DT Functional Values

The DT of all the functions are identified and tabulated. Then, the DT

functional values are categorized and valued based on its complexity. The

metrics and its values of DT functional values are shown in the Table 4.6.

Table 4.6: DT Functional Values

S. No DT Functional

Values

DT

Metrics

DT Metric

Values

1 1 to 4 Low 4

2 5 to 6 Average 5

3 7 to 9 High 7

4 >9 Very High 10

71

If the DT functional value is in-between 1 and 4, the DT metric is low and

its value is 4. If the DT functional value is in-between 5 and 6, the DT metric

is Average and its value is 5. If the DT functional value is in-between 7 and 9,

the DT metric is High and its value is 7. If the DT functional value is greater

than 9, the DT metric is very high and its value is 10.

EQ Functional Values

The EQ of all the functions are identified and tabulated. Then, the EQ

functional values are categorized and valued based on its complexity. The

metrics and its values of EQ functional values are shown in the Table 4.7.

Table 4.7: EQ Functional Values

S. No EQ Functional

Values

EQ

Metrics

EQ Metric

Values
1 1 to 3 Low 3

2 4 to 5 Average 4

3 6 to 8 High 6

4 >9 Very High 9

If the EQ functional value is in-between 1 and 3, the EQ metric is low and

its value is 3. If the EQ functional value is in-between 4 and 5, the EQ metric

is Average and its value is 4. If the EQ functional value is in-between 6 and 8,

the EQ metric is High and its value is 6. If the EQ functional value is greater

than 8, the EQ metric is very high and its value is 9.

72

ILF Functional Values

The ILF of all the functions are identified and tabulated. Then, the ILF

functional values are categorized and valued based on its complexity. The

metrics and its values of ILF functional values are shown in the Table 4.8.

Table 4.8: ILF Functional Values

S. No ILF Functional

Values

ILF

Metrics

ILF Metric

Values

1 1 to 7 Low 7

2 8 to 14 Average 10

3 15 to 21 High 15

4 >21 Very High 22

If the ILF functional value is in-between 1 and 7, the ILF metric is low

and its value is 7. If the ILF functional value is in-between 8 and 14, the ILF

metric is Average and its value is 10. If the ILF functional value is in-between

15 and 21, the ILF metric is High and its value is 15. If the ILF functional value

is greater than 21, the ILF metric is very high and its value is 22.

EIF Functional Values

The EIF of all the functions are identified and tabulated. Then, the EIF

functional values are categorized and valued based on its complexity. The

metrics and its values of EIF functional values are shown in the Table 4.9.

73

Table 4.9: EIF Functional Values

S. No EIF Functional

Values

EIF

Metrics

EIF Metric

Values

1 1 to 5 Low 5

2 6 to 9 Average 7

3 10 to 13 High 10

4 >13 Very High 14

If the EIF functional value is in-between 1 and 5, the EIF metric is low

and its value is 5. If the EIF functional value is in-between 6 and 9, the EIF

metric is Average and its value is 7. If the EIF functional value is in-between

10 and 13, the EIF metric is High and its value is 10. If the EIF functional value

is greater than 13, the EIF metric is very high and its value is 14.

4.1.5 Calculating Functional Units (FU) of MM

All the classes and functions are analyzed and listed with the

corresponding functional units using Table 4.10 format. All the functional units

are identified in each functions of software and are tabulated. The total number

of functions referred and a total functional unit of each type is calculated at the

end of the table.

Table 4.10: Calculating Functional Units

S. No Name of the Function EI II EO IO DT EQ ILF EIF

1

2

3

4

Total number of functions referred

 Total Functional Units

74

4.1.6 Complexity Adjustment Factors (CAF) of MM

The project complexity and management process is one of the challenging

tasks in the size estimation of modern software. In most of the projects, the

complexity of a project will be measured in based on its degree of novelty, its

interdependencies, and the technologies involved. The level of complexity is

the duties, the degree of autonomy and the scope of responsibilities.

The complexity of modern software is derived based on the following

reasons,

 Technology used in the software.

 Standardisation and development models associated to the software.

 Distribution and processing of application.

 The novelty and innovation of the developing system.

 Uncertainty of the software system

The complexity of the software is determined using the following

Complexity Factors (Fi). They are:

1. Whether backup is required to the system?

2. Whether data communication is important?

3. Whether it has any distributed processing?

75

4. Is representation complex?

5. Whether the system works in congested environment?

6. Does it require any online updating?

7. Whether the system has online input, output and operations?

8. Does it require any major file on online updating?

9. Does it work in multi environment?

10. Is the internal operation critical?

11. Is it reusable?

12. Whether the software is extensible?

13. Is it good for different organizations?

14. Does it permit the user interactions?

15. Whether the system uses indexed or listed data (single index or multi

index)?

16. Whether the system uses more than one SDLC models?

17. Does the system using more than one programming languages,

DBMS, Web tools, Drivers, etc.?

18. Does the networking environment using more than one network

topologies?

19. Does the system installed in different nations and uses different

social, cultural, economic and environmental laws?

76

20. Does the system giving multiple forms of output?

21. Does the trial version and model version of software development

affects the system?

22. Does User Interface influence the system?

The influence of the complexity factors of a software is measured using

the influential values (Nil = 0, Secondary = 1, Moderate = 2, Average = 3,

Important = 4, Essential = 5) assigned to the Complexity Factors. The

following Equation (4.1) gives the value of MM Complexity Adjustment Factor

(MMCAF) of the software.

MMCAF = 0.25 + 0.01 * Fi (4.1)

The Fi (i = 1 to 22 factors) is the amount of influence and are based on

responses to complexity factors.

4.1.7 Calculating Unadjusted Modern Metrics Function Points

(UMMFP)

The UMMFP is the number of raw function points present in software.

The Table 4.11 is used to calculate the UMMFP.

77

Table 4.11: Calculation of UMMFP

S.

No

Functional

Units

Total

Number

of

Functions

(TF)

Total

Functio

nal

Units

(TFU)

Average

Functional

Units

(AFU =

TFU / TF)

Metrics

Metric

Value

(W)

UMMFP

(TF * W)

1 EI

2 II

3 EO

4 IO

5 DT

6 EQ

7 ILF

8 EIF

Total UMMFP

The total number of functions is the sum of the functions calculated

individually in each functional unit. It is calculated during the functional unit

calculations of each function in software. If the function having any functional

unit then immediately the corresponding function count is increased by one.

The distinct functional units of each function is calculated and represented

as shown in Table 4.10. The total functional units are the sum of each functional

unit in all functions.

The ratio of total functional units and total number of functions is known

as Average Functional Units.

AFU = TFU/TF (4.2)

78

 The value of metrics and metric value (w) are calculated by using

weightage factor and weightage of the functional units as shown in Table 4.2

to Table 4.9.

The UFP is the product of total number of functions and weightage.

The UMMFP is the sum of all the Unadjusted Function Points of each

functional unit.

4.1.8 Modern Metrics Size (MMSize)

MMSize is the size of the software based on MM. The unit of MM

software size is MMFP (Modern Metrics Function Points). It is calculated

using the Equation (4.3)

MMSize = UMMFP * MMCAF (4.3)

The MMSize is the product of UMMFP and MMCAF.

4.2 ALGORITHM FOR MM

It is a step by step instruction to find the solution for modern software size

using MM.

79

Nomenclature

EI - External Inputs

II - Internal Inputs

EO - External Outputs

IO - Internal Operations

DT - Data and Text

EQ - External Inquiries

ILF - Internal Logical Files

EIF - External Interface Files

FEI - Functions in External Input

FII - Functions in Internal Inputs

FEO - Functions in External Outputs

FIO - Functions in Internal Operations

FDT - Functions in Data and Text

FEQ - Functions in External Inquiries

FILF - Functions in Internal Logical Files

FEIF - Functions in External Interface Files

AEI - Average functional units of External Inputs

80

AII - Average functional units of Internal Inputs

AEO - Average functional units of External Outputs

AIO - Average functional units of Internal Operations

ADT - Average functional units of Data and Text

AEQ - Average functional units of External Inquiries

AILF - Average functional units of Internal Logical Files

AEIF - Average functional units of External Interface Files

WEI - Weightage of External Inputs

WII - Weightage of Internal Inputs

WEO - Weightage of External Outputs

WIO - Weightage of Internal Operations

WDT - Weightage of Data and Text

WEQ - Weightage of External Inquiries

WILF - Weightage of Internal Logical Files

WEIF - Weightage of External Interface Files

UEI - Unadjusted External Inputs

 UII - Unadjusted Internal Inputs

 UEO - Unadjusted External Outputs

81

 UIO - Unadjusted Internal Operations

 UDT - Unadjusted Data and Text

 UEQ - Unadjusted External Inquiries

 UILF - Unadjusted Internal Logical Files

 UEIF - Unadjusted External Interface Files

UMMFP - Unadjusted Modern Metrics Function Points

CAF - Complexity Adjustment Factors

 MMCAF- Modern Metrics Complexity Adjustment Factors

MMSize - Modern Metrics Size

Algorithm Modern Metrics

1. Declare and initialize variables

Initialize variables for functional units EI, II, EO, IO, DT, EQ, ILF and EIF

as zero.

Initialize variables for count functions FEI, FII, FEO, FIO, FDT, FEQ,

FILF and FEIF as zero.

Initialize variables for finding average functional units AEI, AII, AEO,

AIO, ADT, AEQ, AILF and AEIF as zero.

82

Initialize variables for weight age of functional units WEI, WII, WEO,

WIO, WDT, WEQ, WILF and WEIF as zero.

Initialize variables for unadjusted Function Points UEI, UII, UEO, UIO,

UDT, UEQ, UILF and UEIF as zero

Declare a variable for Unadjusted Modern Metrics Function Points

UMMFP

Declare other variables CAF, MMCAF, MMSize

2. Analyze the functions

a) External Input (EI):

Analyzes the entire function and finds all the External Inputs and each

occurrence increases EI by one.

After completing the analysis, if at least one EI value is present in the

function then FEI is increased by one.

b) Internal Input (II):

Analyzes the entire function and finds all the Internal Inputs and each

occurrence of it increases II by one.

After completing the analysis, if at least one II value is present in the

function then FII is increased by one.

83

c) External Output (EO):

Analyzes the entire function and finds all the External Outputs and each

occurrence of it increases EO by one.

After completing the analysis, if at least one EO value is present in the

function then FEO is increased by one.

d) Internal Operations (IO):

Analyzes the entire function and finds all the Internal Operations and each

occurrence of it increases IO by one.

After completing the analysis, if at least one IO value is present in the

function then FIO is increased by one.

e) Data and Text (DT):

Analyzes all the historical data, help files and other documents in the

function and count the words of it, then perform the division operation.

The word count is divided by 8000 then takes the quotient value. If the

quotient value is greater than zero then add quotient with DT and increase

the value of FDT by one.

f) External Inquiries (EQ):

Analyzes the entire function and finds all the External Inquiries and each

occurrence of it increases EQ by one.

After completing the analysis, if at least one EQ value is present in the

function then FEQ is increased by one.

84

g) Internal Logical Files (ILF):

Analyzes the entire function and finds all the Internal Logical Files and

each occurrence of it increases ILF by one.

After completing the analysis, if at least one ILF value is present in the

function then FILF is increased by one.

h) External Interface Files (EIF):

Analyzes the entire function and finds all the External Interface Files and

each occurrence of it increases EIF by one.

After completing the analysis, if at least one EIF value is present in the

function then FEIF is increased by one.

 Step 2 is repeated until all the functions are analyzed.

3. Find the average of functional units

AEI = EI / FEI

AII = II / FII

AEO = EO / FEO

AIO = IO / FIO

ADT = DT / FDT

AEQ = EQ / FEQ

AILF = ILF / FILF

AEIF = EIF / FEIF

85

4. Find the weightage of functional units

a) Weightage of External Input:

If AEI <= 3 then

 WEI = 3

Else if AEI > 3 and AEI <= 5 then

 WEI = 4

Else if AEI > 5 and AEI <= 8 then

 WEI = 6

Else

 WEI = 9

End If

b) Weightage of Internal Input:

If AII <= 3 then

 WII = 3

Else if AII > 3 and AII <= 5 then

 WII = 4

Else if AII > 5 and AII <= 8 then

 WII = 6

Else

 WII = 9

End If

c) Weightage of External Output:

If AEO <= 4 then

86

 WEO = 4

Else if AEO > 4 and AEO <= 6 then

WEO = 5

Else if AEO > 6 and AEO <= 9 then

 WEO = 7

Else

 WEO = 10

End If

d) Weightage of Internal Operations:

If AIO <= 3 then

 WIO = 3

Else if AIO > 3 and AIO <= 5 then

 WIO = 4

Else if AIO > 5 and AIO <= 8 then

 WIO = 6

Else

 WIO = 9

End If

e) Weightage of Data and Text:

If ADT <= 4 then

 WDT = 4

Else if ADT > 4 and ADT <= 6 then

 WDT = 5

Else if ADT > 6 and ADT <= 9 then

 WDT = 7

87

Else

 WDT = 10

End If

f) Weightage of External Inquiries:

If AEQ <= 3 then

 WEQ = 3

Else if AEQ > 3 and AEQ <= 5 then

 WEQ = 4

Else if AEQ > 5 and AEQ <= 8 then

 WEQ = 6

Else

 WEQ = 9

End If

g) Weightage of Internal Logical Files:

If AILF <= 7 then

 WILF = 7

Else if AILF > 7 and AILF <= 14 then

 WILF = 10

Else if AILF > 14 and AILF <= 21 then

 WILF = 15

Else

 WILF = 22

End If

88

h) Weightage of External Interface File:

If AEIF <= 5 then

 WEIF = 5

Elseif AEIF > 5 and AEIF <= 8 then

 WEIF = 7

Elseif AEIF > 8 and AEIF <= 12 then

 WEIF = 10

Else

 WEIF = 14

End If

5. Unadjusted Function Point (UFP) calculation:

UEI = FEI * WEI

UII = FII * WII

UEO = FEO * WEO

UIO = FIO * WIO

UDT = FDT * WDT

UEQ = FEQ * WEQ

UILF = FILF * WILF

UEIF = FEIF * WEIF

6. Unadjusted Modern Metrics Function Point (UMMFP) calculation:

 UMMFP = UEI + UII + UEO + UIO + UDT + UEQ + UILF + UEIF

89

7. MM Complexity Adjustment Factor (MMCAF):

The Complexity Adjustment Factors (CAF) is valued using the

complexity factors.

 MMCAF = (0.25 + 0.01 * CAF)

8. Modern Metrics Size (MMSize) calculation:

MMSize = UMMFP * MMCAF

9. Stop

The above algorithm analyzes all the intermediate steps of Modern

Metrics size estimation process. The accuracy of the estimation is increased

because it does a deep analysis in the software.

4.3 OTHER ESTIMATIONS BASED ON MM

 The other important metrics of SPM like productivity, effort, duration,

cost and price of the software also calculated using MMSize.

4.3.1 Modern Metrics Productivity Factor (MMPF)

MMPF defines the amount of time required for completing one function

point. The productivity factor may change from organization to organization.

MMPF is calculated using the following Equation (4.4),

MMPF = Total Hours required to Complete a project / MMSize (4.4)

90

4.3.2 Modern Metrics Effort (MME)

MME denotes the amount of man-hours required for completion of the

project. Software size is the primary independent variable affecting software

development effort. The following Equation (4.5) is used for calculating effort

using MM.

 MME = MMSize * MMPF (4.5)

 The organization uses productivity factor as 11 because an average of 11

hours per Modern Metrics Function points were taken for software

development.

4.3.3 Modern Metrics Duration (MMD)

 MMD denotes the total time required for completing the

project. The following Equation (4.6) is used for calculating duration using

MM.

MMD = MME / (176 * number of persons involved in the software

development) (4.6)

 The value 176 denotes monthly working hours of a person. The software

industry people work on 22 days per month and per day 8 hours, totally 22*8

= 176 hours.

91

4.3.4 Modern Metrics Cost (MMC)

MMC of the software project is calculated based on the total expenditure

for the development of the software. The following Equation (4.7) is used for

calculating Cost of the project using MM.

MMC = Number of persons involved * Average remuneration of software

developers * MMPF + Management cost (4.7)

 The management cost will be varied from organization to organization.

The Modern Metrics Unit Cost (MMUC) is calculated using the following

Equation (4.8).

 MMUC = MMC / MMSize (4.8)

4.4 SUMMARY

 Modern Metrics (MM) is an Indian metrics, which is used to find the size

of modern software in its design phase of system development life cycle. It is

an opt method finding the size for all types of software. The MM has eight

functional units. They are, Internal Inputs, Internal Operations, Internal Logical

Files, External Inputs, External Outputs, External Inquiries, External Interface

Files and Data and Text.

 The metrics of the functional units are Low, Average, High and Very

High based on the complexity and time required to complete the operations of

each functional unit. These metrics are otherwise known as effort modifiers of

92

the software sizing process. The effort modifiers estimation is explained in

Appendix 2.

 The size, productivity, effort, duration and cost of the software is

estimated using the MM formulas.

93

CHAPTER 5

PRACTICAL IMPLEMENTATION OF MODERN METRICS

 MM, is a novel technique for estimating the size of modern software

system based on its internal, external and hybrid function points. The procedure

for implementing MM is discussed in Chapter 4. Using the Aadhaar processing

system, a practical implementation of MM is analyzed.

5.1 USE CASE MODEL OF MM

 A use case diagram at its simplest is a representation of a user's

interaction with the system that shows the relationship between the user and the

different use cases in which the user is involved. A use case diagram can

identify the different types of users of a system and the different use cases and

will often be accompanied by other types of diagrams as well. The use cases

are represented by either circles or ellipse.

 External Input, External Output, External Inquiries, External

Interface File, Internal Input, Internal Operations, Data and Text and Internal

Logical Files are the important use cases present in MM. External user,

External software, database and storage are the users interacting with the use

cases. All the use cases and users are combined then gives the size of modern

software system.

https://en.wikipedia.org/wiki/Use_case

94

 The use case diagram of MM is present in the following Figure 5.1.

Figure 5.1: Use Case Model of MM

External Input

External Output

External Inquiries

External Interface Files

Internal Input

Internal Operations

Internal Logical Files

Data and Text

<<Sub System>>

Modern Software

External

 User

External

System /

Software

Database

and

Storage

Modern

Metrics

Social /

Economic /

Standardization

SPM Team

95

5.2 CALCULATING THE FUNCTIONAL UNITS

The functional units of each function in Aadhaar processing system is

analyzed separately and tabulated using the Table 5.1.

Table 5.1: Functional Units Calculation

S.No Name of the Function EI II E

O

IO D

T

E

Q

ILF EIF

1 allsched1 5 0 6 0 0 0 1 2

2 cprocess1 5 0 7 0 0 0 1 2

3 cprocess2 3 3 4 0 0 0 1 2

4 cpwd1 2 0 0 0 0 1 0 1

5 cpwd 4 6 0 0 0 1 0 2

6 cregister

9 0 2 1 1 0 0 2

7 ctransit1

1 0 10 3 0 0 1 2

8 ctransit

1 0 1 0 0 0 0 2

9 czpro 3 0 1 0 0 0 0 1

10 dt1

1 0 2 0 1 0 0 1

11 dt2

0 6 2 0 1 0 1 2

12 dt3

2 0 0 0 1 0 1 2

13 fcitizen

0 5 0 0 0 1 1 2

14 lic2

0 0 2 0 0 0 1 2

15 licapp1

1 0 2 1 0 0 1 2

16 licapp2

1 3 6 0 0 0 1 2

17 licapp3

0 6 2 0 0 0 1 2

18 licapp11

1 0 2 0 0 0 1 2

19 licpro2

0 6 3 0 0 0 1 2

20 licst2

1 0 3 0 0 1 1 2

21 licst3

1 8 10 0 0 0 1 2

22 pinmast1

1 7 3 3 0 0 0 2

23 pinmast

0 0 2 0 0 0 1 2

24 pp1

1 0 2 0 0 1 1 2

25 ppst1

1 4 6 0 0 0 0 2

26 ppst11

1 1 1 0 0 0 0 2

27 prolic2

1 0 1 1 0 0 1 2

28 register

0 0 0 0 1 0 1 1

96

S.No Name of the Function EI II E

O

IO D

T

E

Q

ILF EIF

29 registerc

0 0 0 0 1 1 1 1

30 sappno

0 1 1 0 0 0 0 2

31 signin

0 3 4 3 0 1 0 2

32 sregister

0 3 2 0 1 1 1 2

33 tprolic

1 1 0 0 0 0 1 2

34 transit1

1 0 1 0 0 1 1 2

35 transit

1 1 1 0 0 0 0 2

36 tsched

1 6 0 0 0 0 1 2

37 updlic

4 0 1 0 0 1 1 2

38 vastaff

0 4 1 0 0 0 0 2

39 vcz1

1 10 7 0 0 0 0 2

40 vcz

0 0 1 0 0 0 0 1

41 vpp1

1 1 2 2 0 1 0 1

42 vpp2

1 11 12 0 0 0 1 2

43 vpp3

3 0 4 0 0 0 0 2

44 vpppro2

5 0 2 0 0 0 1 2

45 vpropp1

1 1 3 0 0 0 1 2

Total number of functions

referred (TF)

33 23 38 6 7 11 29 45

Total functional units 69 10

0

12

4

11 20 16 29 87

5.3 UNADJUSTED MM FUNCTION POINTS CALCULATION

 The Aadhaar processing software is having 45 functions. In it, 33

functions having 69 External Inputs, 23 functions having 100 Internal Inputs,

38 functions having 124 External Outputs, 6 functions having 11 Internal

Operations, 7 functions having 20 Data and Text, 11 functions having 16

External Inquiries, 29 functions having 29 Internal Logical Files and 45

functions having 87 External Interface Files.

 The UMMFP of Aadhaar processing system calculation is shown in

Table 5.2.

97

Table 5.2: Unadjusted MMFP Calculations

S.

No

Functi

onal

Units

Total

Number of

Functions

(TF)

Total

Function

al Units

(TFU)

Average

Functional

Units

(AFU =

TFU / TF)

Metrics

Metric

Value

(W)

UMM

FP

(TF *

W)

1 EI 33 69 2.0909090 Low 3 99

2 II 23 100 4.3478260 Average 4 92

3 EO 38 124 3.2631578 Low 4 152

4 IO 6 11 1.8333333 Low 3 18

5 DT 7 20 2.8571428 Low 4 28

6 EQ 11 16 1.4545454 Low 3 33

7 ILF 29 29 1.0000000 Low 7 203

8 EIF 45 87 1.8913043 Low 5 230

Total UMMFP 855

 The Aadhaar processing software is having 45 functions. In it, 33

functions having 69 External Inputs, 23 functions having 100 Internal Inputs,

38 functions having 124 External Outputs, 6 functions having 11 Internal

Operations, 7 functions having 20 Data and Text, 11 functions having 16

External Inquiries, 29 functions having 29 Internal Logical Files and 45

functions having 87 External Interface Files.

5.4 COMPLEXITY ADJUSTMENT FACTOR (CAF)

 The novelty, usage, complexity, distinct technologies, standardizations

and policies used in the system are calculated using CAF factors. An

analyzation of CAF calculation for Aadhaar processing system is shown in

Table 5.3.

98

Table 5.3: MMCAF

S.

No
Factors

Scale of Factors

Nil

(0)

Seco

ndar

y (1)

Mod

erate

(2)

Aver

age

(3)

Impor

tant

(4)

Esse

ntial

(5)

Val

ue

1
Whether backup is

required to the system?
-

-

- - - 5 5

2

Whether data

communication is

important?

- - - 3 - - 3

3
Whether it has any

distributed processing?
- - - 3 - - 3

4
Is representation

complex?
- - - - 4 - 4

5

Whether the system

works in congested

environment?

- - - - - 5 5

6
Does it require any

online updating?
- - - - - 5 5

7

Whether the system

has online input, output

and operations?

- - - - - 5 5

8

Does it require any

major file on online

updating?

- - - - - 5 5

9
Does it work in multi

environment?
- - - 3 - - 3

99

S.

No
Factors

Scale of Factors

Nil

(0)

Seco

ndar

y (1)

Mod

erate

(2)

Aver

age

(3)

Impor

tant

(4)

Esse

ntial

(5)

Val

ue

10
Is the internal

operation critical?
- - - 3 - - 3

11
Is the code designed to

be reusable?
- - - - 4 - 4

12
Whether the software

is extensible?
- - 2 - - - 2

13
Is it good for different

organizations?
- - - - 4 - 4

14

Does it permit user

interactions?

- - - - 4 - 4

15

Whether the system

uses indexed or list

data (single index or

multi index)?

- - 2 - - - 2

16

Whether the system

uses more than one

SDLC models?

- - 2 - - - 2

17

Does the system using

more than one

programming

language, DBMS, Web

tools, Drivers etc.?

- - 2 - - - 2

100

S.

No
Factors

Scale of Factors

Nil

(0)

Seco

ndar

y (1)

Mod

erate

(2)

Aver

age

(3)

Impor

tant

(4)

Esse

ntial

(5)

Val

ue

18

Does the networking

environment using

more than one network

topologies?

- - - 3 - - 3

19

Does the system

installed in different

nations and uses

different social,

cultural, economic and

environmental laws?

0 - - - - - 0

20

Does the system giving

multiple forms of

output?

- - - - - 5 5

21

Does the trial version

and model version of

software development

affects the system?

- - - 3 - - 3

22
Does User Interface

influence the system?
- - - - - 5 5

Total CAF 82

The complexity of modern software is derived based on the technology

used in software, standardization and development models associated to

software, distribution and processing of application, novelty and innovation of

101

developing system and uncertainty of the software system. The complexity of

Aadhaar processing system is also derived based on these factors. The

complexity adjustment factor of Aadhaar processing system is 82.

Modern Metrics Complexity Adjustment Factor (MMCAF)

 The value of MMCAF is calculated using the Equation 4.1,

 MMCAF = 0.25 + 0.01 * CAF

 = 0.25 + 0.01 * 82

 MMCAF = 1.07

Modern Metrics Size (MMSize)

 MMSize of the software is calculated using the Equation 4.3,

 MMSize = UMMFP * MMCAF

 = 855 * 1.07

 MMSize = 914.85 MMFP

5.5 OTHER ESTIMATIONS

Modern Metrics Productivity Factor (MMPF)

 MMPF is calculated using the Equation (4.4).

MMPF = Total Hours required to Complete a project / MMSize

Total number of days required for completing the project = 120

102

Total number of persons involved for the development = 6

Total number of hours required to complete the project = 120 * 6 * 8

 = 5760 Hours

 MMPF = 5760 / 914.85

 MMPF = 6.29

 6 Hours and 18 Minutes required for completing a MM Function

Point.

Modern Metrics Effort (MME)

 MME is calculated using the Equation (4.5).

 MME = MMSize * MMPF

 = 914.85 * 6.29

 MME = 5754.40

(5754 Hours and 24 Minutes) Man-Hour required for completing the project

Aadhaar processing system.

Modern Metrics Duration (MMD)

 MMD is calculated using the Equation (4.6).

MMD = MME / (176 * number of human beings involved in the software

development)

 MMD = 5754.40 / (176 * 6)

103

 MMD = 5.18 Months

 (5 Months and 7 Days) of time required to complete the project.

Modern Metrics Cost (MMC)

 MMC is calculated using the Equation (4.7).

MMC = The average remuneration of software developers * number of persons

involved * MMPF+ Management cost

The average remuneration of a software developer per month = 22950.75

(Indian Rupee)

Total number of months required for completing project = 5.18

Average remuneration for a developer = 22950.75 * 5.18

 = 118884.88 (Indian Rupee)

 Management Cost = 210000 (Indian Rupee)

 MMC = 118884.88 * 6* 6.29 + 210000

 MMC = 4696715.37 (Indian Rupee)

Modern Metrics Unit Cost (MMUC)

MMUC is calculated using the Equation (4.8).

 MMUC = MMC / MMSize

 MMUC = 4696715.37/914.85

104

 MMUC = 5133.86 (Indian Rupee)

Modern Metrics Price (MMP)

 MMP is the market price of the software product. It is the sum of MM

Cost, Maintenance cost of the firm and profit of the industry. The MMP is

calculated using the Equation (5.1).

MM Price = MM Cost + (MM Cost + (MM Cost * Percentage of Maintenance

cost)) * Percentage of profit of the industry (5.1)

Assuming, the maintenance cost as 40% of the MM cost and percentage of

profit as 30%, then price of the software is calculated by

MMP = 4696715.37 + (4696715.37 + (4696715.37 *40/100)) * 30/100

 = 4696715.37 + (4696715.37 + (4696715.37 * 0.4)) *0.3

MMP = 6669335.82 (Indian Rupee)

 The productivity, effort, duration, cost and price of the Software Project

Management prerequisites are calculated using Indian software industrial

values.

5.6 SUMMARY

 In Aadhar Processing System, all SPM factors like size, productivity,

effort, duration, cost and price are estimated using different formulas derived

using Modern Metrics. The final report of the MM Size estimation is shown in

the Table 5.4.

105

Table 5.4: MM Report

MODERN METRICS SIZE REPORT

Date: 30-7-2018

Name of the Software Aadhaar Processing System

Total Number of Functions 45

Functional Units

S.No Functional Units Total Functional

Units (TFU)

1 External Inputs (EI) 69

2 Internal Inputs (II) 100

3 External Outputs (EO) 124

4 Internal Operations (IO) 11

5 Data and Text (DT) 20

6 External Inquiries (EQ) 16

7 Internal Logical Files (ILF) 29

8 External Interface Files (EIF) 87

MMCAF 1.07

MMSize 914.85 MMFP

Number of Persons involved for development 6

Number of Months required to complete the

project 5.18

Average remuneration per developer (₹) 118884.88

MM Productivity 6.29

MM Effort (Hours) 5754.40

MM Cost (₹) 4696715.37

MM Unit Cost (₹) 5133.86

Price of the Software (₹) 6669335.82

Time required for estimation 18Hours

106

CHAPTER 6

RESULT ANALYSIS

The Aadhaar processing system application is used for analyzing the

performance of FPA and MM. The performance of traditional FPA and MM is

analyzed with various parameters and the results are tabulated. To find the size

of the software, only one person was involved. It took 3 days (19 Hours) for

traditional FPA and 2 days (12 Hours) for MM.

6.1 TRADITIONAL FUNCTION POINT ANALYSIS (FPA) METHOD

In the traditional FPA method, all the five functional units are categorised

based on its availability with the functions as low, average and high. The

weightage factors and its values were discussed in Table 3.1.

The functional units of traditional FPA and UFP of Aadhaar processing

system is shown in Table 6.1.

107

Table 6.1: Traditional FPA

S.

No

Functional

Units

Weighting

Factor

Number

of

Functions

Weightage
Total

Weightage
Total

1 EI

Low 10 3 30

152 Average 8 4 32

High 15 6 90

2 EO

Low 6 4 24

224 Average 12 5 60

High 20 7 140

3 EQ

Low 2 3 6

52 Average 4 4 16

High 5 6 30

4 ILF

Low 18 7 126

246 Average 6 10 60

High 4 15 60

5 EIF

Low 32 5 160

270 Average 10 7 70

High 4 10 40

UFP 944

The complexity of the software is measured based on complexity factors

listed in the CAF of FPA and is calculated using the Equation 3.3.

CAF of traditional FPA = 1.25

108

The size of the software is calculated using the Equation 3.4. The size is

quantified using the unit Function Points (FP).

The size of software using FPA = 1180 FP

6.2 MODERN METRICS (MM) METHOD

The Table 6.2 displays all the functional units of MM and calculates the

UMMFP of Aadhaar processing system.

Table 6.2: Updated UMMFP

S.

No

Functi

onal

Units

Total

Number of

Functions

(TF)

Total

Function

al Units

(TFU)

Average

Functional

Units

(AFU =

TFU / TF)

Metrics

Metric

Value

(W)

UMMF

P

(TF *

W)

1 EI 33 69 2.0909090 Low 3 99

2 II 23 100 4.3478260 Average 4 92

3 EO 38 124 3.2631578 Low 4 152

4 IO 6 11 1.8333333 Low 3 18

5 DT 7 20 2.8571428 Low 4 28

6 EQ 11 16 1.4545454 Low 3 33

7 ILF 29 29 1.0000000 Low 7 203

8 EIF 46 87 1.8913043 Low 5 230

Total UMMFP 855

The various Complexity factors are valued and calculated MMCAF

MMCAF = 1.07

MMSize = 914.85 MMFP

109

6.3 COMPARISON OF FPA AND MM WITH INTERMEDIATE

RESULTS

The performance of MM over traditional FPA based on intermediate

results of the calculation is shown in Figure 6.1.

Figure 6.1: FPA and MM Intermediate Results

 The unadjusted functional units in Aadhaar processing system are shown

in Figure 6.1. All the intermediate result values of MM is comparatively less

when compared to the values FPA. The inflated functional values of FPA are

reduced in MM. It is the main reason for reduction in the size of intermediate

results of functional units.

152
224

52

246 270

944

1.25

1180

99 152
33

203 230

855

1.07

914.85

0

200

400

600

800

1000

1200

1400

EI EO EQ ILF EIF UFP CAF Size

F
U

N
C

T
IO

N
A

L
 S

IZ
E

FUNCTIONAL UNITS

FPA and MM Intermediate Results and Size of

Aadhar Processing System

FP MM

110

6.4 COMPARISON OF FPA AND MM WITH OTHER RESULTS

The Figure 6.2 shows the performance of MM over traditional FPA based

on the results of application software Aadhaar processing system.

Figure 6.2: FPA and MM with other Results

 From the Figure 6.2, it is shown that the size of the software is less in MM

compared to FPA. Therefore, the factors of SPM based on software size are

also less in MM over FPA. The results of MM are mostly same as that of

industrial results.

6.5 ANALYSIS WITH OTHER SOFTWARE: CASE STUDY

 The size and time required to find the size of the software in MM and

FPA of different types of software are shown in the Table 6.3.

1
9

3

1 0
.3

3
3

3
3

3
3

3
31

2

2 1 0
.5

T I M E D A Y S P E R S O N P R O D U C T I V I T Y

SP
M

 V
A

LU
ES

SPM FACTORS

FPA AND MM WITH OTHER RESULTS

FP MM

111

Table 6.3: FPA Size and MM Size

S.

No
Software Name

MM FPA

 Size

Time

in

Hour

 Size

Time

in

Hour

1 Aadhaar 914.85 12 1180 19

2 Online Shopping 517.88 8 481.25 8

3 Battle Ship 68.48 1 20 0.5

4 Calculator 31 0.66 22 0.5

5 Stack 28 0.58 16 0.41

 The Aadhaar processing system is application software with more EI and

less IO and DT. Therefore, the size in MM is less than FPA. The software like

online shopping, battle ship, scientific calculator and stack implementation are

having more number of internal operations and online shopping software

having many databases and drivers. Therefore, the not required functional units

in FPA like Internal Inputs, Internal Operations and Data and Text are

considered in MM. It is increased size of MM over FPA. The detailed study of

size analysis is present in Appendix 3 and Appendix 4.

 The Figure 6.3 gives the size of the projects in a detailed manner. The

size calculated using MM is same as that of industry based results of SPM

factors like effort, time and cost.

112

Figure 6.3: MM Size and FPA Size of Software

6.6 ANALYSIS WITH DIFFERENT FUNCTIONAL UNITS

In this proposed work, the size and SPM prerequisites like cost, time and

effort of57 distinct functions have been analysed. These values were compared

with actual market values (the detailed study is present in Appendix 3 and

Appendix 4). The results of the study are displayed in the Figure 6.4 and Figure

6.5.

Analysis based on Size

Figure 6.4: MM and FPA Size

0
200
400
600
800

1000
1200
1400

Aadhar Online
Shopping

Battle Ship Calculator Stack

Si
ze

Software Size

MM Size FPA Size

0

10

20

30

1 3 5 7 9 111315171921232527293133353739414345474951535557

S
IZ

E

FUNCTIONS

MM and FPA analysis of functions

MM FPA

113

Analysis based on Cost

Figure 6.5: MM, FPA and Industry Values

 The results received from above studies conclude that the defects per

function point of FPA are 4.5 and it is near to zero in MM. The cost per function

point is ₹. 10552.58 in FPA and it is ₹. 6389.37 in MM. The productivity of

FPA is 2.123 and it is 1.055 in MM. The effort, cost and duration of MM is

nearly same as that of Indian industrial values.

6.7 DIFFERENCE BETWEEN FPA AND MM

 The various differences and merits of MM over FPA are listed in the

Table 6.4.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

C
o

st
 (

₹
)

Functions

Industrial Values - Small Functions

MM Cost FPA Cost Industry Cost

114

Table 6.4: Differences between FPA and MM

S. No Function Point Analysis Modern Metrics

1

The traditional FPA methods only

focused on the external input and

output values of a function.

The MM not only considering

external input and output, but also

considers internal inputs, internal

operations and data bases.

2

The traditional FPA is good for

basic application software. But it is

not giving the actual size for

modern software like RDBMS,

scientific, web based and design

software.

The MM is a good estimation

method for application, scientific,

RDBMS and web based software.

3
The traditional FPA method does

not consider indexed and listed data

The MM considers indexed and

listed data.

4

The traditional FPA methods are not

giving importance to databases. The

modern software like cloud, data

mining, Big data and Data analytics

applications will not give actual size

using traditional function points.

The MM is giving importance to

the databases. It is good for

modern software like cloud, data

mining, Big data and Data

analytics applications.

5
The defects per function point of

traditional FPA are 4.5.

The defects per function point of

MM are near to zero.

6

The traditional FPA is using only

five functional elements. They are

External Inputs, External Outputs,

The MM uses eight functional

elements. They are External

Inputs, Internal Inputs, External

115

S. No Function Point Analysis Modern Metrics

External Inquiries, External

Interface files and Internal Logical

files.

Outputs, External Inquiries,

Internal Operations, Data and

Text, External Interface Files and

Internal Logical files.

7
The traditional FPA methods are not

considering SDLC of software.

The MM considers SDLC of

software.

8

The traditional size estimation starts

at the beginning phases of the

SDLC. But it is not efficient for

scientific applications.

The MM also does the size

estimation at the beginning

phases of the SDLC and is

efficient for scientific

applications.

9

The traditional FPA methods are

calculating functional units from

every function and treat it in a

separate manner. So, inflated

functional values are possible in the

estimation.

The MM is calculating functional

units from every function and

treats it in collective manner. So,

the inflated functional values are

highly negligible in the

estimation.

10

The traditional FPA methods are

using only 14 complexity

adjustment factors.

The MM uses 22 complexity

adjustment factors based on

traditional and modern software

requirements.

11

The traditional FPA methods are not

efficient for distributed and parallel

processing systems.

The MM is giving importance for

distributed and parallel

processing systems with the help

of complexity adjustment factors.

116

S. No Function Point Analysis Modern Metrics

12

The multiple forms of output are not

getting importance in traditional

FPA methods. So the effort of the

developer is under estimated.

The multiple forms of output is

getting importance through

complexity adjustment factors in

MM.

13
The GUI is not getting importance

in traditional FPA.

The GUI is getting importance

through complexity adjustment

factors in MM.

14

The trial versions and beta version

of the software is not influenced in

traditional FPA.

The trial versions and beta

version of the software is

considered using complexity

adjustment factors of MM.

6.8 SUMMARY

 MM is an efficient method for finding the size of new modern software

systems. The defects are negligible and all the user, developer, internal and

external factors are analysed in MM. The results shown that MM is accurate

when compared to all the existing sizing techniques.

117

CONCLUSION

This proposed innovative approach MM is used for calculating the size of

the software at the early stages of SDLC. The difficulties with budgeting and

delivery of the software product are overwhelmed. The traditional FPA based

sizing techniques are considering only the user perspectives but, the proposed

MM technique considers user and developer perspectives. Thus, the defects in

functional units of MM technique are negligible. The MM technique uses eight

functional units over traditional FPA’s five functional units. The MM

technique uses twenty two complexity factors over traditional FPA’s fourteen

complexity factors. These updates are increasing the accuracy of the size of the

software.

The MM technique reduces the inflated functional units of traditional

FPA. Therefore, MM technique reduces around 20% to 30% of size in

application software over FPA. The MM technique considers internal

operations, multiple forms of outputs and database in its application. Thus, MM

technique gives actual size of the scientific, AI, web pages and game playing

software. The undefined functional units of design and modeling software like

Computer Aided Designing, Computer Aided Modeling etc. shall be

considered in the future studies.

118

FUTURE ENHANCEMENTS

 There are some directions for future work that are worth exploring. These

directions involve further calibrating the approach, extending it to other types

of system sizing. MM is a Functional size measurement mechanism only

considering modern software system. It is suitable for any kind of Management

Information System (MIS), Scientific and Web applications too. The following

are the Future enhancements that are applicable.

 Inabilities of MM should be identified by examining different kind of

applications like animations, design and modeling applications. It extends by

modifying the components and makes it suitable for sizing a different kind of

software system.

 The extension of MM gives the functional and dysfunctional behaviors of

social systems like governance, political parties, social and political unions,

economic policies, organizations and so on.

 The extended forms of MM not only give solution for software industry,

it gives functional and dysfunctional values for all social, technical, political,

scientific and economic systems of the world.

119

APPENDIX 1

FINDING THE FUNCTIONAL UNITS OF MM

The functional units of MM are explained in Chapter 4.1.2. The way of

finding the functional units of software is explained using small software.

#include<iostream.h>

void get(void);

void add (int,int);

void put();

inta,b;

void main()

 {

 get();

 add(a,b);

 put();

 }

void get()

 {

cout<<“Enter a”;

cin>>a;

 b=20;

}

void add(int a, int b)

{

int c= a+b;

}

void put()

{

cout<<”Sum =”<<c;

}

120

The functional units of above program are present in the Table A1.1.

Table A1.1: Sample Functional Units

S.

No

Functional

Unit

Function Variable

1 EI get() a

2 II get() b

3 EO put() c

4 IO add() c

5 DT

6 EQ

7 ILF

iostream.h

8 EIF

121

APPENDIX 2

EFFORT MODIFIERS

The effort modifiers are metric values of functional units in modern

software system. The metrics of modern software system are categorized into

low, average, high and very high. The effort modifiers are time variants in

SDLC process. Each value of effort modifiers specifies that, this is the time in

hour required to complete a functional unit of particular type in its all SDLC

processes. The effort modifiers of functional types are calculated by using 57

distinct functions and 5 small and medium level software projects. All the

values are calculated using real time applications. The metrics of functional

units of MM are in the Table A2.1.

Table A2.1: Functional Units with Metrics

Metrics
Functional Units

EI II EO IO DT EQ ILF EIF

Low 1 to

3

1 to

3

1 to

4

1 to

3

1 to

4

1 to

3
1 to 7 1 to 5

Average 4 to

5

4 to

5

5 to

6

4 to

5

5 to

6

4 to

5
8 to 14 6 to 9

High 6 to

8

6 to

8

7 to

9

6 to

8

7 to

9

6 to

8
15 to 21 10 to 13

Very

High
>8 >8 >9 >8 >9 >9 >21 >13

If a function has 1 to 3 EI then, the metrics of EI is Low. Similarly, all the

metrics are identified in a function and are tabulated. The metric values are

effort modifiers of MM listed in the Table A2.2.

122

Table A2.2: Metrics with its Values

Metrics EI II EO IO DT EQ ILF EIF

Low 3 3 4 3 4 3 7 5

Average 4 4 5 4 5 4 10 7

High 6 6 7 6 7 6 15 10

Very High 9 9 10 9 10 9 22 14

The real analysis of effort modifiers of External Input (EI) is present in

the Table s from Table A2.3 to Table A2.6. The average time required to

complete low EI is 3; average EI is 4; high EI is 6 and very high EI is 9. These

are the actual low, average, high and very high metric values of EI.

Similarly, all the values of metrics of other functional units are calculated

by using the tables from Table A2.7 to Table A2.24.

Table A2.3: Low EI

Low External Inputs

S.No Name of the Program EI
Time (Hour)

Required to complete

1 Aadhaar 69 203

2 Calculator 1 2

3 Arithmetic Operations 2 2

4 Relational Operations 2 3

5 Logical Operators 3 4

6 Bitwise Operator 2 2

7 Increment and Decrement 1 1

8 sizeof function 3 3

9 getchar function 1 2

10 getche function 2 2

123

Low External Inputs

S.No Name of the Program EI
Time (Hour)

Required to complete

11 Roots of a quadratic

equation
3 4

12 Even numbers 1 3

13 Number triangle 1 7

14 Number Pyramid 1 6

15 Factorial 1 3

16 Sum of digits 1 2

17 Sum of n numbers 1 4

18 Prime or not 1 3

19 Exponential Series 2 6

20 Sine series 2 6

21 Cos series 2 6

22 Reverse a number 1 3

23 Sum of series 1 3

24 Octal to decimal 1 3

25 Palindrome 1 6

26 Line of string 1 8

27 Substring detection 2 7

28 Substring removal 2 8

29 NCR 2 4

30 GCD 2 4

31 Fibonacci series 1 4

32 Matrix transpose 3 6

33 Matrix determinant 3 4

34 Insertion sort 2 6

35 Bubble sort 2 6

124

Low External Inputs

S.No Name of the Program EI
Time (Hour)

Required to complete

36 Linear Search 2 7

37 Function multiplication 2 3

38 strlen function 1 2

39 strcpy function 2 2

40 Union marks 3 6

41 Area of a circle 1 3

42 Biggest digit 1 3

43 Check armstrong 1 4

44 Sum of digits 1 4

45 Prime number 2 4

46 Arrange the digits 1 6

47 Leap year 1 4

48 Binary search tree 1 8

Total Low EI 145

Total time to complete the EI 402

Average time required to complete

each EI
3

Table A2.4: Average EI

Average External Inputs

S.No Name of the Program EI
Time (Hour)

Required to complete

1 Online Shopping 41 168

2 Matrix addition 4 14

3 Matrix Subtraction 4 14

Total Average EI 49

Total time to complete the EI 196

Average time required to complete

each EI
4

125

Table A2.5: High EI

High External Inputs

S.

No
Name of the Program EI

Time (Hour)

Required to complete

1 Matrix multiplication 6 36

2 Report card 8 40

Total High EI 14

Total time to complete the EI 76

Average time required to

complete each EI
6

Table A2.6: Very High EI

Very High External Inputs

S.

No
Name of the Program EI

Time (Hour) Required

to complete

1 Battle ship 17 154

Total Very High EI 17

Total time to complete the EI 154

Average time required to

complete each EI
9

Table A2.7: Low II

Low Internal Inputs

S.No Name of the Program II
Time (Hour) Required

to complete

1 Online Shopping 9 32

2 Factorial 1 3

3 Sum of digits 1 3

4 Sum of n numbers 1 5

5 Exponential Series 2 5

6 Sine series 2 5

7 Cos series 2 5

8 Sum of series 2 5

126

Low Internal Inputs

S.No Name of the Program II
Time (Hour) Required

to complete

9 Line of string 2 6

10 Substring detection 3 6

11 NCR 1 4

12 Fibonacci series 2 2

13 Sum of n numbers 2 3

14 Preprocessor 3 1

15 Area of a circle 1 1

16 Biggest digit 1 1

17 Check armstrong 1 1

18 Sum of digits 3 2

19 Arrange the digits 1 1

Total Low II 40

Total time to complete the II 91

Average time required to complete

each II
3

Table A2.8: Average II

Average Internal Inputs

S.No Name of the Program II
Time (Hour) Required

to complete

1 Aadhaar 100 404

2 Substring removal 4 8

Total Average II 104

Total time to complete the II 412

Average time required to complete

each II
4

127

Table A2.9: Very High II

Very High Internal Inputs

S.No Name of the Program II
Time (Hour) Required

to complete

1 Calculator 19 169

Total Very High II 19

Total time to complete the II 169

Average time required to complete

each II
9

Table A2.10: Low EO

Low External Outputs

S.No Name of the Program EI
Time (Hour) Required

to complete

1 Aadhaar 124 499

2 Online Shopping 41 172

3 Calculator 2 9

4 Relational Operations 1 3

5 Logical Operators 1 4

6 Increment and Decrement 4 3

7 sizeof function 3 4

8 getchar function 1 4

9 getche function 2 8

10 Roots of a quadratic

equation
2 8

11 Even numbers 1 3

12 Number triangle 1 8

13 Number Pyramid 2 8

14 Factorial 2 8

15 Sum of digits 1 4

128

Low External Outputs

S.No Name of the Program EI
Time (Hour) Required

to complete

16 Sum of n numbers 1 4

17 Prime or not 2 7

18 Exponential Series 1 7

19 Sine series 1 8

20 Cos series 1 8

21 Reverse a number 1 4

22 Sum of series 1 7

23 Octal to decimal 1 4

24 Palindrome 1 4

25 Line of string 4 14

26 Substring detection 1 8

27 Substring removal 2 6

28 NCR 1 4

29 GCD 1 6

30 Fibonacci series 1 4

31 Matrix addition 1 8

32 Matrix Subtraction 1 8

33 Matrix multiplication 1 10

34 Matrix transpose 1 8

35 Matrix determinant 1 12

36 Insertion sort 1 4

37 Bubble sort 1 6

38 Linear Search 1 4

39 Function without arguments 1 4

40 Function multiplication 1 4

129

Low External Outputs

S.No Name of the Program EI
Time (Hour) Required

to complete

41 strlen function 1 3

42 strcpy function 2 3

43 Sum of n numbers 1 4

44 Structure student 4 4

45 Union marks 1 4

46 Preprocessor 3 6

47 Area of a circle 2 5

48 Biggest digit 1 8

49 Circle 1 4

50 Ellipse 1 4

51 Line 1 4

52 Check armstrong 1 6

53 Sum of digits 1 6

54 Prime number 1 4

55 Arrange the digits 1 5

56 Leap year 1 4

57 Binary search tree 1 7

Total Low EO 63

Total time to complete the EO 283

Average time required to complete

each EO
4

130

Table A2.11: Average EO

Average External Outputs

S.No Name of the Program EI
Time (Hour) Required

to complete

1 Arithmetic Operations 5 24

2 Bitwise Operator 6 30

Total Average EO 11

Total time to complete the EO 54

Average time required to complete

each EO
5

Table A2.12: High EO

High External Outputs

S.No Name of the Program EI
Time (Hour)

Required to complete

1 Report card 9 55

Total High EO 9

Total time to complete the EO 55

Average time required to complete

each EO
7

Table A2.13: Very High EO

Very High External Outputs

S.No Name of the Program EI
Time (Hour) Required

to complete

1 Battle ship 8 82

Total Very High EO 8

Total time to complete the EO 82

Average time required to complete

each EO
10

131

Table A2.14: Low IO

Low Internal Operations

S.No Name of the Program IO
Time (Hour) Required to

complete

1 Aadhaar 11 36

2 Online Shopping 33 102

3 Relational Operations 3 10

4 Logical Operators 3 11

5 getchar function 1 2

6

Roots of a quadratic

equation
1

4

7 Even numbers 1 2

8 Number triangle 1 5

9 Number Pyramid 1 5

10 Factorial 1 2

11 Sum of digits 1 2

12 Prime or not 1 2

13 Exponential Series 1 4

14 Sine series 1 4

15 Cos series 1 4

16 Reverse a number 1 2

17 Palindrome 2 6

18 Line of string 2 7

19 Substring detection 2 8

20 NCR 1 2

21 GCD 1 2

22 Fibonacci series 1 4

23 Matrix addition 3 8

132

Low Internal Operations

S.No Name of the Program IO
Time (Hour) Required to

complete

24 Matrix Subtraction 3 8

25 Matrix multiplication 3 8

26 Matrix transpose 2 6

27 Matrix determinant 3 9

28 Insertion sort 2 8

29 Bubble sort 2 7

30 Linear Search 2 6

31

Function without

arguments
1

2

32 Function multiplication 1 2

33 strlen function 1 2

34 strcpy function 1 2

35 Sum of n numbers 1 2

36 Preprocessor 1 2

37 Biggest digit 1 2

38 Circle 1 2

39 Ellipse 1 2

40 Line 1 2

41 Check armstrong 1 2

42 Sum of digits 1 2

43 Prime number 2 5

44 Arrange the digits 2 6

45 Leap year 2 6

Total Low IO 109

Total time to complete the IO 327

Average time required to

complete each IO
3

133

Table A2.15: Average IO

Average Internal Operations

S.

No
Name of the Program IO

Time (Hour) Required to

complete

1 Substring removal 4 16

Total Average IO 4

Total time to complete the IO 16

Average time required to

complete each IO
4

Table A2.16: High IO

High Internal Operations

S.No Name of the Program IO
Time (Hour) Required to

complete

1 Report card 6 32

2 Binary search tree 5 24

Total High IO 11

Total time to complete the IO 56

Average time required to complete

each IO
6

Table A2.17: Very High IO

Very High Internal Operations

S.No Name of the Program IO
Time (Hour) Required to

complete

1 Battle ship 88 791

2 Calculator 18 160

Total High IO 106

Total time to complete the IO 951

Average time required to complete

each IO
9

134

 Table A2.18: Low DT

Low Data and Text

S.No Name of the Program DT
Time (Hour) Required

to complete

1 Aadhaar 20 68

Total Low DT 20

Total time to complete the DT 68

Average time required to complete

each DT
4

Table A2.19: Very High DT

Very High Data and Text

S.No Name of the Program DT
Time (Hour)

Required to complete

1 Online Shopping 9 85

Total Very High DT 9

Total time to complete the DT 85

Average time required to complete

each DT
10

Table A2.20: Low EQ

Low External Inquiries

S.No Name of the Program EQ
Time (Hour)

Required to complete

1 Aadhaar 16 43

Total Low EQ 16

Total time to complete the EQ 43

Average time required to complete

each EQ
3

135

Table A2.21: Very High EQ

Very High External Inquiries

S.No Name of the Program EQ
Time (Hour)

Required to complete

1 Online Shopping 7 57

Total Very High EQ 7

Total time to complete the EQ 57

Average time required to complete

each EQ
9

Table A2.22: Low ILF

Low Internal Logical Files

S.No Name of the Program ILF
Time (Hour)

Required to complete

1 Aadhaar 29 201

2 Online Shopping 33 232

3 Calculator 1 6

Total Low ILF 63

Total time to complete the ILF 439

Average time required to complete

each ILF

 7

Table A2.23: Low EIF

Low External Interface Files

S.No Name of the Program EIF
Time (Hour) Required

to complete

1 Aadhaar 87 437

2 Battle ship 3 18

3 Online Shopping 37 185

4 Arithmetic Operations 1 4

5 Relational Operations 1 4

136

Low External Interface Files

S.No Name of the Program EIF
Time (Hour) Required

to complete

6 Logical Operators 1 4

7 Bitwise Operator 1 4

8 Increment and Decrement 1 4

9 sizeof function 2 7

10 getchar function 2 9

11 getche function 2 9

12 Report card 2 14

13 Roots of a quadratic equation 3 12

14 Even numbers 2 9

15 Number triangle 2 12

16 Number Pyramid 2 12

17 Factorial 2 12

18 Sum of digits 2 12

19 Sum of n numbers 2 9

20 Prime or not 3 12

21 Exponential Series 3 16

22 Sine series 3 16

23 Cos series 3 16

24 Reverse a number 2 10

25 Sum of series 2 10

26 Octal to decimal 2 10

27 Palindrome 3 15

28 Line of string 3 14

29 Substring detection 3 15

30 Substring removal 3 15

137

Low External Interface Files

S.No Name of the Program EIF
Time (Hour) Required

to complete

31 NCR 3 15

32 GCD 2 10

33 Fibonacci series 2 10

34 Matrix addition 2 10

35 Matrix Subtraction 2 10

36 Matrix multiplication 2 10

37 Matrix transpose 2 10

38 Matrix determinant 2 10

39 Insertion sort 2 10

40 Bubble sort 2 10

41 Linear Search 2 10

42 Function without arguments 2 10

43 Function multiplication 2 10

44 strlen function 3 12

45 strcpy function 3 12

46 Sum of n numbers 2 10

47 structure student 2 10

48 Union marks 2 10

49 Preprocessor 2 10

50 Area of a circle 2 10

51 Biggest digit 2 10

52 Circle 2 10

53 Ellipse 2 10

54 Line 2 10

55 Check armstrong 3 10

138

Low External Interface Files

S.No Name of the Program EIF
Time (Hour) Required

to complete

56 Sum of digits 2 10

57 Prime number 3 10

58 Arrange the digits 2 10

59 Leap year 2 10

60 Binary search tree 2 10

Total Low EIF 250

Total time to complete the EIF 1235

Average time required to complete

each EIF

 5

Table A2.24: Average EIF

Average External Interface Files

S.No Name of the Program EIF
Time (Hour)

Required to complete

1 Calculator 6 43

Total Average EIF 6

Total time to complete the EIF 41

Average time required to complete

each EIF
7

139

APPENDIX 3

FUNCTIONAL UNITS, UNADJUSTED FUNCTION POINTS AND

SIZE OF MM AND FPA WITH SAMPLE FUNCTIONS

In this analysis 57 functions, 5 medium and small software are used. The

way of finding functional units, unadjusted function points, complexity

adjustment factor and size of the software of MM are present in Chapter 4. The

way of finding functional units, unadjusted function points, complexity

adjustment factor and size of the software of FPA are present in Chapter 3.4.3.

The functional units, unadjusted function points, complexity values and

size of 57 functions of MM is present in the Table A3.1. The functional units,

unadjusted function points, complexity values and size of 57 functions of FPA

is present in the Table A3.2. The MM and FPA size of 5 small and medium

level software present in Table A3.3.

The MM considers all the IO of software. The size of some functions and

small software like battle ship and calculator are high in MM is comparatively

the size in FPA. This has reduced the defects in function point calculation of

MM.

The MM considers the database of the software. So, the size of online

shopping software is high compared to FPA. MM considers the work behind

the database and all text files.

The software Aadhaar gives less size in MM because it has more number

of EI and EO. The inflated function points of FPA are removed in MM.

140

Table A3.1: Size of MM

S.

No
Program Name

Functional Units of MM Unadjusted MM MM Size

EI EO EQ ILF EIF II IO DT EI EO EQ ILF EIF II IO DT TFU CAF Size

1 Arithmetic Operations 2 5 0 0 1 0 0 3 5 0 0 5 0 0 0 13 1 13

2 Relational Operations 2 1 0 0 1 0 3 0 3 4 0 0 5 0 3 0 15 1 15

3 Logical Operators 3 1 0 0 1 0 3 0 3 4 0 0 5 0 3 0 15 1 15

4 Bitwise Operator 2 6 0 0 1 0 0 0 3 5 0 0 5 0 0 0 13 1 13

5

Increment and

Decrement
1 4 0 0 1 0 0 0 3 4 0 0 5 0 0 0 12 1 12

6 sizeof function 3 3 0 0 2 0 0 0 3 4 0 0 5 0 0 0 12 1 12

7 getchar function 1 1 0 0 2 0 1 0 3 4 0 0 5 0 3 0 15 1 15

8 getche function 2 2 0 0 2 0 0 0 3 4 0 0 5 0 0 0 12 1 12

9 Report card 8 7 0 0 2 0 6 0 6 7 0 0 5 0 6 0 24 1 24

10

Roots of a quadratic

equation
3 2 0 0 3 0 1 0 3 4 0 0 5 0 3 0 15 1 15

11 Even numbers 1 1 0 0 2 0 1 0 3 4 0 0 5 0 3 0 15 1 15

12 Number triangle 1 1 0 0 2 0 1 0 3 4 0 0 5 0 3 0 15 1 15

13 Number Pyramid 1 2 0 0 2 0 1 0 3 4 0 0 5 0 3 0 15 1 15

14 Factorial 1 2 0 0 2 1 1 0 3 4 0 0 5 3 3 0 18 1 18

15 Sum of digits 1 1 0 0 2 1 1 0 3 4 0 0 5 3 3 0 18 1 18

16 Sum of n numbers 1 1 0 0 2 1 0 3 4 0 0 5 3 0 0 15 1 15

17 Prime or not 1 2 0 0 3 1 0 3 4 0 0 5 0 3 0 15 1 15

18 Exponential Series 2 1 0 0 3 2 1 0 3 4 0 0 5 3 3 0 18 1 18

141

S.

No
Program Name

Functional Units of MM Unadjusted MM MM Size

EI EO EQ ILF EIF II IO DT EI EO EQ ILF EIF II IO DT TFU CAF Size

19 Sine series 2 1 0 0 3 2 1 0 3 4 0 0 5 3 3 0 18 1 18

20 Cos series 2 1 0 0 3 2 1 0 3 4 0 0 5 3 3 0 18 1 18

21 Reverse a number 1 1 0 0 2 0 1 0 3 4 0 0 5 0 3 0 15 1 15

22 Sum of series 1 1 0 0 2 2 0 0 3 4 0 0 5 3 0 0 15 1 15

23 Octal to decimal 1 1 0 0 2 0 0 0 3 4 0 0 5 0 0 0 12 1 12

24 Palindrome 1 1 0 0 3 0 2 0 3 4 0 0 5 0 3 0 15 1 15

25 Line of string 1 4 0 0 3 2 2 0 3 4 0 0 5 3 3 0 18 1 18

26 Substring detection 2 1 0 0 3 3 2 0 3 4 0 0 5 3 3 0 18 1 18

27 Substring removal 2 2 0 0 3 4 4 0 3 4 0 0 5 4 4 0 20 1 20

28 NCR 2 1 0 0 3 1 1 0 3 4 0 0 5 3 3 0 18 1 18

29 GCD 2 1 0 0 2 0 1 0 3 4 0 0 5 0 3 0 15 1 15

30 Fibonacci series 1 1 0 0 2 2 1 0 3 4 0 0 5 3 3 0 18 1 18

31 Matrix addition 4 1 0 0 2 0 3 0 4 4 0 0 5 0 3 0 16 1 16

32 Matrix Subtraction 4 1 0 0 2 0 3 0 4 4 0 0 5 0 3 0 16 1 16

33 Matrix multiplication 6 1 0 0 2 0 3 0 6 4 0 0 5 0 3 0 18 1 18

34 Matrix transpose 3 1 0 0 2 0 2 0 3 4 0 0 5 0 3 0 15 1 15

35 Matrix determinant 3 1 0 0 2 0 3 0 3 4 0 0 5 0 3 0 15 1 15

36 Insertion sort 2 1 0 0 2 0 2 0 3 4 0 0 5 0 3 0 15 1 15

37 Bubble sort 2 1 0 0 2 0 2 0 3 4 0 0 5 0 3 0 15 1 15

38 Linear Search 2 1 0 0 2 0 2 0 3 4 0 0 5 0 3 0 15 1 15

142

S.

No
Program Name

Functional Units of MM Unadjusted MM MM Size

EI EO EQ ILF EIF II IO DT EI EO EQ ILF EIF II IO DT TFU CAF Size

39

Function without

arguments
 0 1 0 0 2 0 1 0 0 4 0 0 5 0 3 0 12 1 12

40 Function multiplication 2 1 0 0 2 0 1 0 3 4 0 0 5 0 3 0 15 1 15

41 strlen function 1 1 0 0 3 0 1 0 3 4 0 0 5 0 3 0 15 1 15

42 strcpy function 2 2 0 0 3 0 1 0 3 8 0 0 5 0 3 0 19 1 19

43 Sum of n numbers 0 1 0 0 2 2 1 0 0 4 0 0 5 3 3 0 15 1 15

44 structure student 0 4 0 0 2 4 0 0 0 4 0 0 5 4 0 0 13 1 13

45 Union marks 3 1 0 0 2 0 0 0 3 4 0 0 5 0 0 0 12 1 12

46 Preprocessor 0 3 0 0 2 3 1 0 0 4 0 0 5 3 3 0 15 1 15

47 Area of a circle 1 2 0 0 2 1 0 0 3 4 0 0 5 3 0 0 15 1 15

48 Biggest digit 1 1 0 0 2 1 1 0 3 4 0 0 5 3 3 0 18 1 18

49 Circle 0 1 0 0 2 0 1 0 0 4 0 0 5 0 3 0 12 1 12

50 Ellipse 0 1 0 0 2 0 1 0 0 4 0 0 5 0 3 0 12 1 12

51 Line 0 1 0 0 2 0 1 0 0 4 0 0 5 0 3 0 12 1 12

52 Check armstrong 1 1 0 0 3 1 1 0 3 4 0 0 5 3 3 0 18 1 18

53 Sum of digits 1 1 0 0 2 3 1 0 3 4 0 0 5 3 3 0 18 1 18

54 Prime number 2 1 0 0 3 0 2 0 3 4 0 0 5 0 3 0 15 1 15

55 Arrange the digits 1 1 0 0 2 1 2 0 3 4 0 0 5 3 3 0 18 1 18

56 Leap year 1 1 0 0 2 0 2 0 3 4 0 0 5 0 3 0 15 1 15

57 Binary search tree 1 1 0 0 2 4 5 0 3 4 0 0 5 4 6 0 22 1 22

Total 97 93 0 0 123 43 80 0 158 237 0 0 285 66 145 0 891 57 891

143

Table A3.2: Size of FPA

S.

No
Program Name

Functional Units of FPA Unadjusted FPA FPA Size

EI EO EQ ILF EIF EI EO EQ ILF EIF TFU CAF Size

1 Arithmetic Operations 2 5 0 0 1 3 5 0 0 5 13 1 13

2 Relational Operations 2 1 0 0 1 3 4 0 0 5 12 1 12

3 Logical Operators 3 1 0 0 1 3 4 0 0 5 12 1 12

4 Bitwise Operator 2 6 0 0 1 3 5 0 0 5 13 1 13

5 Increment and Decrement 1 4 0 0 1 3 4 0 0 5 12 1 12

6 sizeof function 3 3 0 0 2 3 4 0 0 5 12 1 12

7 getchar function 1 1 0 0 2 3 4 0 0 5 12 1 12

8 getche function 2 2 0 0 2 3 4 0 0 5 12 1 12

9 Report card 8 7 0 0 2 6 7 0 0 5 18 1 18

10
Roots of a quadratic

equation
3 2 0 0 3 3 4 0 0 5 12 1 12

11 Even numbers 1 1 0 0 2 3 4 0 0 5 12 1 12

12 Number triangle 1 1 0 0 2 3 4 0 0 5 12 1 12

13 Number Pyramid 1 2 0 0 2 3 4 0 0 5 12 1 12

14 Factorial 1 2 0 0 2 3 4 0 0 5 12 1 12

144

S.

No
Program Name

Functional Units of FPA Unadjusted FPA FPA Size

EI EO EQ ILF EIF EI EO EQ ILF EIF TFU CAF Size

15 Sum of digits 1 1 0 0 2 3 4 0 0 5 12 1 12

16 Sum of n numbers 1 1 0 0 2 3 4 0 0 5 12 1 12

17 Prime or not 1 2 0 0 3 3 4 0 0 5 12 1 12

18 Exponential Series 2 1 0 0 3 3 4 0 0 5 12 1 12

19 Sine series 2 1 0 0 3 3 4 0 0 5 12 1 12

20 Cos series 2 1 0 0 3 3 4 0 0 5 12 1 12

21 Reverse a number 1 1 0 0 2 3 4 0 0 5 12 1 12

22 Sum of series 1 1 0 0 2 3 4 0 0 5 12 1 12

23 Octal to decimal 1 1 0 0 2 3 4 0 0 5 12 1 12

24 Palindrome 1 1 0 0 3 3 4 0 0 5 12 1 12

25 Line of string 1 4 0 0 3 3 4 0 0 5 12 1 12

26 Substring detection 2 1 0 0 3 3 4 0 0 5 12 1 12

27 Substring removal 2 2 0 0 3 3 4 0 0 5 12 1 12

28 NCR 2 1 0 0 3 3 4 0 0 5 12 1 12

29 GCD 2 1 0 0 2 3 4 0 0 5 12 1 12

30 Fibonacci series 1 1 0 0 2 3 4 0 0 5 12 1 12

145

S.

No
Program Name

Functional Units of FPA Unadjusted FPA FPA Size

EI EO EQ ILF EIF EI EO EQ ILF EIF TFU CAF Size

31 Matrix addition 4 1 0 0 2 4 4 0 0 5 13 1 13

32 Matrix Subtraction 4 1 0 0 2 4 4 0 0 5 13 1 13

33 Matrix multiplication 6 1 0 0 2 6 4 0 0 5 15 1 15

34 Matrix transpose 3 1 0 0 2 3 4 0 0 5 12 1 12

35 Matrix determinant 3 1 0 0 2 3 4 0 0 5 12 1 12

36 Insertion sort 2 1 0 0 2 3 4 0 0 5 12 1 12

37 Bubble sort 2 1 0 0 2 3 4 0 0 5 12 1 12

38 Linear Search 2 1 0 0 2 3 4 0 0 5 12 1 12

39
Function without

arguments
 1 0 0 2 0 4 0 0 5 9 1 9

40 Function multiplication 2 1 0 0 2 3 4 0 0 5 12 1 12

41 strlen function 1 1 0 0 3 3 4 0 0 5 12 1 12

42 strcpy function 2 2 0 0 3 3 8 0 0 5 16 1 16

43 Sum of n numbers 1 0 0 2 0 4 0 0 5 9 1 9

44 structure student 4 0 0 2 0 4 0 0 5 9 1 9

45 Union marks 3 1 0 0 2 3 4 0 0 5 12 1 12

146

S.

No
Program Name

Functional Units of FPA Unadjusted FPA FPA Size

EI EO EQ ILF EIF EI EO EQ ILF EIF TFU CAF Size

46 Preprocessor 3 0 0 2 0 4 0 0 5 9 1 9

47 Area of a circle 1 2 0 0 2 3 4 0 0 5 12 1 12

48 Biggest digit 1 1 0 0 2 3 4 0 0 5 12 1 12

49 Circle 1 0 0 2 0 4 0 0 5 9 1 9

50 Ellipse 1 0 0 2 0 4 0 0 5 9 1 9

51 Line 1 0 0 2 0 4 0 0 5 9 1 9

52 Check armstrong 1 1 0 0 3 3 4 0 0 5 12 1 12

53 Sum of digits 1 1 0 0 2 3 4 0 0 5 12 1 12

54 Prime number 2 1 0 0 3 3 4 0 0 5 12 1 12

55 Arrange the digits 1 1 0 0 2 3 4 0 0 5 12 1 12

56 Leap year 1 1 0 0 2 3 4 0 0 5 12 1 12

57 Binary search tree 1 1 0 0 2 3 4 0 0 5 12 1 12

Total 97 93 0 0 123 158 237 0 0 285 680 57 680

147

Table A3.3: Size of MM and Size of FPA

S. No Program Name MM Size FPA Size

1 Aadhaar 914.85 1180

2 Battle ship 84.53 20

3 Online Shopping 517.88 481

4 Calculator 58 46

5 Functions (57 Functions) 596 680

148

APPENDIX 4

SOFTWARE PREREQUISITES OF MM AND FPA

The prerequisites of SPM are effort, time and cost. The way of

finding prerequisites are present in Chapter 4.3. The comparison of MM

software prerequisites to industrial values is present in Table A4.1. The

comparison of FPA software prerequisites to industrial values present in Table

A4.2.

These studies thereby reflect that the size of MM is same as that of

industrial values. Hence, MM is the best method for estimating the size of

software compared to FPA.

149

Table A4.1: MM vs Industrial Values

S.

No
Program Name

Modern Metrics Industrial Values

MM

Size
Productivity

Effort

(Man-

Hours)

Duration

(Month)
Cost

Duration

(Month)
Cost

1 Aadhaar 914.85 6.3 5763.56 4.68 6584760 4.68 6600000

2 Battle ship 84.53 17.89 1512.24 1.23 7086460.5 1.23 7100000

3 Online Shopping 517.88 8.65 4479.66 3.64 5764850 3.64 5800000

4 Functions 596 1.61 959.56 0.78 109746 0.78 110000

5 Calculator 58 0.41 23.78 0.02 567 0.02 600

6 Arithmetic Operations 13 0.62 8.06 0.01 357 0.01 350

7 Relational Operations 15 0.53 7.95 0.01 325.5 0.01 350

8 Logical Operators 15 0.53 7.95 0.01 325.5 0.01 350

9 Bitwise Operator 13 0.62 8.06 0.01 357 0.01 350

10 Increment and

Decrement
12 0.67 8.04 0.01 374.5 0.01 350

11 sizeof function 12 0.67 8.04 0.01 374.5 0.01 350

12 getchar function 15 0.53 7.95 0.01 325.5 0.01 350

13 getche function 12 0.67 8.04 0.01 374.5 0.01 350

150

S.

No
Program Name

Modern Metrics Industrial Values

MM

Size
Productivity

Effort

(Man-

Hours)

Duration

(Month)
Cost

Duration

(Month)
Cost

14 Report card 24 0.67 16.08 0.01 718.5 0.01 700

15 Roots of a quadratic

equation
15 0.53 7.95 0.01 325.5 0.01 350

16 Even numbers 15 0.53 7.95 0.01 325.5 0.01 350

17 Number triangle 15 0.53 7.95 0.01 325.5 0.01 350

18 Number Pyramid 15 0.53 7.95 0.01 325.5 0.01 350

19 Factorial 18 0.44 7.92 0.01 294 0.01 300

20 Sum of digits 18 0.44 7.92 0.01 294 0.01 300

21 Sum of n numbers 15 0.53 7.95 0.01 325.5 0.01 350

22 Prime or not 15 0.53 7.95 0.01 325.5 0.01 350

23 Exponential Series 18 0.44 7.92 0.01 294 0.01 300

24 Sine series 18 0.44 7.92 0.01 294 0.01 300

25 Cos series 18 0.44 7.92 0.01 294 0.01 300

26 Reverse a number 15 0.53 7.95 0.01 325.5 0.01 350

27 Sum of series 15 0.53 7.95 0.01 325.5 0.01 350

151

S.

No
Program Name

Modern Metrics Industrial Values

MM

Size
Productivity

Effort

(Man-

Hours)

Duration

(Month)
Cost

Duration

(Month)
Cost

28 Octal to decimal 12 0.67 8.04 0.01 374.5 0.01 350

29 Palindrome 15 0.53 7.95 0.01 325.5 0.01 350

30 Line of string 18 0.44 7.92 0.01 294 0.01 300

31 Substring detection 18 0.44 7.92 0.01 294 0.01 300

32 Substring removal 20 0.8 16 0.01 420 0.01 500

33 NCR 18 0.44 7.92 0.01 294 0.01 300

34 GCD 15 0.53 7.95 0.01 325.5 0.01 300

35 Fibonacci series 18 0.44 7.92 0.01 294 0.01 300

36 Matrix addition 16 0.5 8 0.01 315 0.01 300

37 Matrix Subtraction 16 0.5 8 0.01 315 0.01 300

38 Matrix multiplication 18 0.44 7.92 0.01 294 0.01 350

39 Matrix transpose 15 0.53 7.95 0.01 325.5 0.01 350

40 Matrix determinant 15 0.53 7.95 0.01 325.5 0.01 350

41 Insertion sort 15 0.53 7.95 0.01 325.5 0.01 350

152

S.

No
Program Name

Modern Metrics Industrial Values

MM

Size
Productivity

Effort

(Man-

Hours)

Duration

(Month)
Cost

Duration

(Month)
Cost

42 Bubble sort 15 0.53 7.95 0.01 325.5 0.01 350

43 Linear Search 15 0.53 7.95 0.01 325.5 0.01 350

44 Function without

arguments
12 0.67 8.04 0.01 374.5 0.01 350

45 Function

multiplication
15 0.53 7.95 0.01 325.5 0.01 350

46 strlen function 15 0.53 7.95 0.01 325.5 0.01 350

47 strcpy function 19 0.42 7.98 0.01 287 0.01 350

48 Sum of n numbers 15 0.53 7.95 0.01 325.5 0.01 350

49 structure student 13 0.62 8.06 0.01 357 0.01 350

50 Union marks 12 0.67 8.04 0.01 374.5 0.01 350

51 Preprocessor 15 0.53 7.95 0.01 325.5 0.01 350

52 Area of a circle 15 0.53 7.95 0.01 325.5 0.01 350

53 Biggest digit 18 0.44 7.92 0.01 294 0.01 350

54 Circle 12 0.67 8.04 0.01 374.5 0.01 350

55 Ellipse 12 0.67 8.04 0.01 374.5 0.01 350

153

S.

No
Program Name

Modern Metrics Industrial Values

MM

Size
Productivity

Effort

(Man-

Hours)

Duration

(Month)
Cost

Duration

(Month)
Cost

56 Line 12 0.67 8.04 0.01 374.5 0.01 350

57 Check armstrong 18 0.44 7.92 0.01 294 0.01 350

58 Sum of digits 18 0.44 7.92 0.01 294 0.01 350

59 Prime number 15 0.53 7.95 0.01 325.5 0.01 350

60 Arrange the digits 18 0.44 7.92 0.01 294 0.01 350

61 Leap year 15 0.53 7.95 0.01 325.5 0.01 350

62 Binary search tree 22 0.36 7.92 0.01 266 0.01 350

Total 3062.26 65.41 13209 10.92 19565400 10.92 19630450

Average 49.39 1.055 213.048 0.17613 315570.9677 0.176129032 316620.1613

Salary per developer per

month
35000

Cost per MM 6389.37

Development Time per

MM (Days)
4.31

Productivity per day per

person
0.23

154

Table A4.2: FPA vs Industrial Values

S.

No
Program Name

FPA Metrics Industrial Values

FPA Size Productivity

Effort

(Man-

Hours)

Duration

(Month)
Cost

Duration

(Month)
Cost

1 Aadhaar 1180 4.881355932 5758.4 4.674026 5183890.91 4.68 6600000

2 Battle ship 20 75.6 1512 1.227273 19587272.73 1.23 7100000

3 Online Shopping 481 9.313929314 4478.11 3.63483 7414780.23 3.64 5800000

4 Functions 680 1.411764706 958.8 0.778247 296100 0.78 110000

5 Calculator 46 0.52173913 23.92 0.019416 3758.18 0.02 600

6 Arithmetic Operations 13 0.615384615 8.06 0.006542 1395 0.01 350

7 Relational Operations 12 0.666666667 8.04 0.006526 1461.82 0.01 350

8 Logical Operators 12 0.666666667 8.04 0.006526 1461.82 0.01 350

9 Bitwise Operator 13 0.615384615 8.06 0.006542 1395 0.01 350

10 Increment and

Decrement
12 0.666666667 8.04 0.006526 1461.82 0.01 350

11 sizeof function 12 0.666666667 8.04 0.006526 1461.82 0.01 350

12 getchar function 12 0.666666667 8.04 0.006526 1461.82 0.01 350

13 getche function 12 0.666666667 8.04 0.006526 1461.82 0.01 350

155

S.

No
Program Name

FPA Metrics Industrial Values

FPA Size Productivity

Effort

(Man-

Hours)

Duration

(Month)
Cost

Duration

(Month)
Cost

14 Report card 18 0.888888889 16.02 0.013003 3519.55 0.01 700

15 Roots of a quadratic

equation
12 0.666666667 8.04 0.006526 1461.82 0.01 350

16 Even numbers 12 0.666666667 8.04 0.006526 1461.82 0.01 350

17 Number triangle 12 0.666666667 8.04 0.006526 1461.82 0.01 350

18 Number Pyramid 12 0.666666667 8.04 0.006526 1461.82 0.01 350

19 Factorial 12 0.666666667 8.04 0.006526 1461.82 0.01 300

20 Sum of digits 12 0.666666667 8.04 0.006526 1461.82 0.01 300

21 Sum of n numbers 12 0.666666667 8.04 0.006526 1461.82 0.01 350

22 Prime or not 12 0.666666667 8.04 0.006526 1461.82 0.01 350

23 Exponential Series 12 0.666666667 8.04 0.006526 1461.82 0.01 300

24 Sine series 12 0.666666667 8.04 0.006526 1461.82 0.01 300

25 Cos series 12 0.666666667 8.04 0.006526 1461.82 0.01 300

26 Reverse a number 12 0.666666667 8.04 0.006526 1461.82 0.01 350

27 Sum of series 12 0.666666667 8.04 0.006526 1461.82 0.01 350

156

S.

No
Program Name

FPA Metrics Industrial Values

FPA Size Productivity

Effort

(Man-

Hours)

Duration

(Month)
Cost

Duration

(Month)
Cost

28 Octal to decimal 12 0.666666667 8.04 0.006526 1461.82 0.01 350

29 Palindrome 12 0.666666667 8.04 0.006526 1461.82 0.01 350

30 Line of string 12 0.666666667 8.04 0.006526 1461.82 0.01 300

31 Substring detection 12 0.666666667 8.04 0.006526 1461.82 0.01 300

32 Substring removal 12 1.333333333 15.96 0.012955 4715.45 0.01 500

33 NCR 12 0.666666667 8.04 0.006526 1461.82 0.01 300

34 GCD 12 0.666666667 8.04 0.006526 1461.82 0.01 300

35 Fibonacci series 12 0.666666667 8.04 0.006526 1461.82 0.01 300

36 Matrix addition 13 0.615384615 8.06 0.006542 1395 0.01 300

37 Matrix Subtraction 13 0.615384615 8.06 0.006542 1395 0.01 300

38 Matrix multiplication 15 0.533333333 7.95 0.006453 1264.77 0.01 350

39 Matrix transpose 12 0.666666667 8.04 0.006526 1461.82 0.01 350

40 Matrix determinant 12 0.666666667 8.04 0.006526 1461.82 0.01 350

41 Insertion sort 12 0.666666667 8.04 0.006526 1461.82 0.01 350

157

S.

No
Program Name

FPA Metrics Industrial Values

FPA Size Productivity

Effort

(Man-

Hours)

Duration

(Month)
Cost

Duration

(Month)
Cost

42 Bubble sort 12 0.666666667 8.04 0.006526 1461.82 0.01 350

43 Linear Search 12 0.666666667 8.04 0.006526 1461.82 0.01 350

44 Function without

arguments
9 0.888888889 8.01 0.006502 1759.77 0.01 350

45 Function multiplication 12 0.666666667 8.04 0.006526 1461.82 0.01 350

46 strlen function 12 0.666666667 8.04 0.006526 1461.82 0.01 350

47 strcpy function 16 0.5 8 0.006494 1227.27 0.01 350

48 Sum of n numbers 9 0.888888889 8.01 0.006502 1759.77 0.01 350

49 structure student 9 0.888888889 8.01 0.006502 1759.77 0.01 350

50 Union marks 12 0.666666667 8.04 0.006526 1461.82 0.01 350

51 Preprocessor 9 0.888888889 8.01 0.006502 1759.77 0.01 350

52 Area of a circle 12 0.666666667 8.04 0.006526 1461.82 0.01 350

53 Biggest digit 12 0.666666667 8.04 0.006526 1461.82 0.01 350

54 Circle 9 0.888888889 8.01 0.006502 1759.77 0.01 350

55 Ellipse 9 0.888888889 8.01 0.006502 1759.77 0.01 350

158

S.

No
Program Name

FPA Metrics Industrial Values

FPA Size Productivity

Effort

(Man-

Hours)

Duration

(Month)
Cost

Duration

(Month)
Cost

56 Line 9 0.888888889 8.01 0.006502 1759.77 0.01 350

57 Check armstrong 12 0.666666667 8.04 0.006526 1461.82 0.01 350

58 Sum of digits 12 0.666666667 8.04 0.006526 1461.82 0.01 350

59 Prime number 12 0.666666667 8.04 0.006526 1461.82 0.01 350

60 Arrange the digits 12 0.666666667 8.04 0.006526 1461.82 0.01 350

61 Leap year 12 0.666666667 8.04 0.006526 1461.82 0.01 350

62 Binary search tree 12 0.666666667 8.04 0.006526 1461.82 0.01 350

Total 3087 131.6681053 13205.15 10.71847 32575823.92 10.92 19630450

Average 49.79032 2.123679118 212.9863 0.172878 525416.5148 0.176129 316620.2

Salary per developer per

month
35000

Cost per MM
10552.58

Development Time per MM

(Days)
4.28

Productivity per day per

person
0.23

159

REFERENCES

1. Angelica Toffano Calazans, Kathia Marcal de Oliveira and Rildo Ribeiro

Dos Santos (2004), ”Adapting Function Point Analysis to Estimate Data

Mart Size”, METRICS’04, IEEE, pp.1530 – 1435.

2. Abran A., Cuadrado J. and Desharnais J. M. (2006), “Convertibility of

Function Points to COSMICFFP: Identification and Analysis of

Functional Outliers”, MENSURA, Cadiz (Spain), pp. 6-8.

3. Barry W. Boehm (1981), “Software Engineering Economics”. Prentice-

Hall.

4. Barry W. Boehm (1986), "Software Engineering Economics", Tutorial,

Software Management, Third Edition, Washington, DC, IEEE Computer

Society Press, pp. 148.

5. Capers Jones (2007), “Estimating Software Costs: Bringing Realism to

Estimating”, Second Edition, Tata McGraw Hill, New York, pp. 3-629.

6. Capers Jones (2008), “Applied Software Measurement-Global Analysis

of Productivity and Quality”, Third Edition, Tata McGraw Hill, New

York, pp. 71-182.

7. Cigdem Gencel, Rogardt Heldal and Kenneth Lind (2009), “On the

Relationship between Different Size Measures in the Software Life

Cycle”, 2009 16th Asia-Pacific Software Engineering Conference,

IEEE, pp. 19-26.

160

8. Capers Jones (2010), “Software Engineering Best Practices: Lessons

from Successful Projects in the Top Companies”, Tata McGraw Hill

Edition,

pp. 1- 643.

9. Dalkey N. and Helmer O. (1963), "An Experimental Application of the

Delphi Method to the Use of Experts," Management Science, pp. 458-

467.

10. Daniel V. Ferens (1999), “Software Size Estimation Techniques”, Air

Force Institute of Technology (AFIT/ISY), Wriqht-Patterson AEB, Ohio

45433, pp. 701-706.

11. Daniel V. Ferens (1999), “The Conundrum Software Estimation

Models”, Air Force Research Laboratory (AFRLIIFSD), IEEE, pp. 23-

29.

12. Demirors and Gencel C. (2004), "A Comparison of Size Estimation

Techniques Applied Early in the Life Cycle", Software Process

Improvement, vol. 3281, pp.184-194.

13. Edilson J. D. Cândido and Rosely Sanches (2003), “Estimating the Size

of Web Applications by using a Simplified Function Point Method”,

IEEE.

14. Eck D., Brundick B., Fettig T., Dechoretz J. and Ugljesa J. (2009),

"Parametric Estimating Handbook", The International Society of

Parametric Analysis, Fourth Edition.

161

15. Erika Corona, Michele Marchesi, Giulio Barabino, Daniele Grechi and

Laura Piccinno (2012), “Size Estimation of Web Applications through

Web CMF Object”, IEEE, pp. 14-20.

16. Ferchichi A., Bourey J.P., Bigand M. and Barron M. (2006),”Design

Systems Engineering of Software Products: Implementation of a

Software Estimation Model” IMACS Multi conference on

Computational Engineering in Systems Applications(CESA), Beijing,

China, pp. 1181-1188.

17. Filip Misovski (2007), “Estimating Development Of New User

Interface”, US 2007/0265779 A1, United States Patent.

18. Galorath D. D. and Evans M. W. (2006), “Software Sizing, Estimation,

and Risk Management”, Boston, MA, USA: Auerbach Publications.

19. Gustavo Bestetti Ibarra and Patrícia Vilain (2011), “Software Estimation

Based on Use Case Size”, Brazilian Symposium on Software

Engineering, IEEE, pp. 178 -187.

20. Gopalaswamy Ramesh (2013), “Managing Global Software Projects”,

McGraw Hill Education, India.

21. Hughes R. T. (1996), "Expert Judgement as an Estimating Method,"

Information and Software Technology, pp. 67-75.

22. Humphrey Watts. S (2004), “Managing the Software Process”, SEI

Series in Software Engineering, Pearson Education, Singapore.

162

23. Henry Joel (2008), “Software Project Management A Real-World Guide

to Success”, Pearson, India.

24. ISO/IEC 20968(2002), “Software Engineering – Mk II Function Point

Analysis – Counting Practices Manual”, International Organization for

Standardization – ISO, Geneva.

25. ISO/IEC19761 (2003), “Software Engineering – COSMIC-FFP A

Functional Size Measurement Method”, International Organization for

Standardization - ISO, Geneva.

26. ISO/IEC 20926(2003), “Software Engineering – IFPUG 4.1 Unadjusted

Functional Size Measurement Method – Counting Practices Manual”,

International Organization for Standardization – ISO, Geneva.

27. ISO/IEC 24750 (2005), “Software Engineering – NESMA Functional

Size Measurement Method Version 2.1 – Definitions and Counting

Guidelines for the Application of Function Points Analysis”,

International Organization for Standardization – ISO, Geneva.

28. Iman Attarzadeh and Siew Hock Ow (2009),”Proposing a New High

Performance Model for Software Cost Estimation”, Second International

Conference on Computer and Electrical Engineering, IEEE, pp. 112-116.

29. June Verner and Graham Tate (1992), “A Software Size Model”, IEEE

Transactions on Software Engineering, VOL. 18, NO. 4, APRIL 1, pp.

265-278.

163

30. Juan J. Cuadrado Gallego, Pablo Rodríguez Soriaand Saahil Hakimuddin

(2010), “Early Functional Size Estimation with IFPUG Unit Modified”,

9th IEEE/ACIS International Conference on Computer and Information

Science, IEEE.

31. Karner G. (1993), "Resource Estimation for Objectory Projects,"

Objective Systems.

32. Kotonya G. and Sommerville I. (1998),”Requirements Engineering:

Processes and Technique”, Chichester; New York: John Wiley.

33. Kjetil Molokken and Magne Jorgensen (2003), “A Review of Surveys

on Software Effort Estimation”, International Symposium on Empirical

Software Engineering (ISESE’03), IEEE.

34. Kenneth Lind and Rogardt Heldal (2009), “Estimation of Real-Time

Software Code Size using COSMIC FSM”, IEEE International

Symposium on Object/Component/Service-Oriented Real-Time

Distributed Computing, pp. 244-248.

35. Linda M. Laird (2006), “The Limitations of Estimation”, IT Pro

November❘ December2006 Published by the IEEE Computer Society

IEEE, pp. 40-45.

36. Lynch J. (2009), “Chaos Manifesto”, The Standish Group, Boston,

[Online]. Available:http://www.standishgroup.com/newsroom/chaos_

2009.php.

164

37. Lavanya Srinivasan and Steven S. Stefan (2010), “Enhanced Function

Point Analysis”, US 7,743,369 B1, United States Patent.

38. Luigi Buglione and Christ of Ebert (2011), “Estimation Tools and

techniques”, IEEE, pp. 92-96.

39. Mehwish Nasir and Farooq Ahmad H. (2006), “An Empirical Study to

Investigate Software Estimation Trend in Organizations Targeting

CMMI”, Proceedings of the 5th IEEE/ACIS International Conference on

Computer and Information Science and 1st IEEE/ACIS International

Workshop on Component-Based Software Engineering, Software

Architecture and Reuse (ICIS-COMSAR’06),IEEE.

40. Md.Forhad Rabbi, Shailendra Natraj and Olorisade Babatunde Kazeem

(2009), “Evaluation of Convertibility Issues between IFPUG and

COSMIC Function Points”, Fourth International Conference on

Software Engineering Advances, IEEE, pp. 277-281.

41. Mahir Kaya and Onur Demirörs (2011), “E-Cosmic: A Business Process

Model Based Functional Size Estimation Approach”, 37th

EUROMICRO Conference on Software Engineering and Advanced

Applications, IEEE, pp. 404-408.

42. Najberg and Andrew C. (1984), “Software Data Base Development”,

Volume I, Reading, MA, The Analytic Sciences Corporation, (Technical

Report 4612-S-1), pp. 2-4.

165

43. Noureldin A.Z Adem and Zarinah M. Kasirun (2010),”Automating

Function Points Analysis Based on Functional and non-functional

Requirements Text”, IEEE, pp. 664-669.

44. Putnam L. H. (1978), "A General Empirical Solution to the Macro

Software Sizing and Estimating Problem," IEEE Transactions on

Software Engineering, pp. 345-361.

45. Paul A. Below and Poulsbo (2007), “System and Method for Function

Point Sampling for Software Size Estimates”, US 7,213,234 B1, United

States Patent.

46. Richard D. Stutzke (2005), “Estimating Software-Intensive Systems:

Projects, Products and Processes”, SEI Series in Software Engineering,

Addison Wesley, pp. 1-786.

47. Renjeev V. Kolanchery and Harish Ranganath (2007), “Project Size

Estimation Tool”, US 2007/0276712 A1, United States Patent.

48. Robert T. Futrell, Donald F. Shafer and Linda I. Shafer (2008), “Quality

Software Project Management”, Pearson Education, pp. 1-600.

49. Rodrigo C. Barros, Duncan D. Ruiz, Nelson N. Tenório Jr. and Márcio

P. Basgalupp (2009), ”Issues on Estimating Software Metrics in a Large

Software Operation”, 32nd Annual IEEE Software Engineering

Workshop, IEEE, pp. 152-159.

166

50. ShukorSanim M. Fauzi, Hairul Nizam M. Nasir, Nuraminah R.,

Kamaruzaman Jusoff N.,Azylia A. Azam, Hafiz Ismail M. (2009), “The

Implementation of Software Process Improvement Models”,

International Review on Computers and Software, Vol. 4. No. 3, pp. 402

– 407.

51. Steven Fraser, Barry Boehm, Hakan Erdogmus, Magne Jorgensen, Stan

Rifkin and Mike Ross (2009),”The Role of Judgment in Software

Estimation”, ICSE’09, Vancouver, Canada, IEEE, pp. 13-17.

52. Ursula Passing and Martin Shepperd (2003), “An Experiment on

Software Project Size and Effort Estimation”, International Symposium

on Empirical Software Engineering (ISESE’03), IEEE.

53. Zia Z., Rashid A. and uz Zaman K. (2010), “Software Cost Estimation

for Component Based Fourth-Generation-Language”, IET Software, pp.

103-110.

167

INDEX

A

Architecture of MM 63

Algorithm for MM 78

B

Backfiring Function Points 16, 50

C

Complexity Adjustment Factors

(CAF) 39, 74, 97

Composite Function Points (CFP)

60

Constructive Cost Model

(COCOMO) 1, 6

D

3D Function Points 16

Data Base Management System

(DBMS) 9

Data Functions 36

De Marco Function Points 16

Delphi 15, 34

Domains of Modern Software

System 9

Dependent Function Points (DFP)

58

E

E-Commerce 10

Environmental Factor (EF) 46

Estimation by Analogy 15, 34

Expert Judgment 15, 33

External Inquiries (EQ) 37

External Input (EI) 37

External Interface File (EIF) 37

External Output (EO) 37

168

F

Feature Points 16, 41

Full Function Points 16

Function Points 15

Functional Risks 51

Functional Units of MM 63

Function Point Analysis (FPA) 35

Function Point Light 16

G

General System Characteristics

(GSC) 38

Graphical User Interface (GUI) 16

H

Halstead’s Software Science 32

Hybrid functional units 65

I

Indexed Data 56

Internal Input 55

Internal Operations 55

 International Function Point User

Group (IFPUG) Function

Points 16

Internal Logical File (ILF) 36

Internet Points 16

L

Linear Method 15

Lines of Code (LOC) 25, 32

M

Modern Metrics (MM) 2, 62

Modern Metrics Size (MMSize) 78

Modern Software System 2, 40

Multi-valued Function Points 57

N

Netherlands Software Metrics

Users Association (NESMA) 16

169

O

Object Points 16, 48

P

Pattern Matching 15, 35

Project Planning 1, 5

Project Requirements 4

S

Social Risks 51, 53

Software Project Management

(SPM) 1, 16

Software Science Metric 14

Software Size 16

Standish Group 10

Story Points 16

System Development Life Cycle

(SDLC) 2

T

Technical Complexity Factor

(TCF) 45

Total Metrics (Australian Metrics)

16

Transaction Functions 37

U

USE CASE MODEL OF MM 93

Unadjusted Function Point (UFP)

37

Unadjusted Use Case Points

(UUCP) 45

Use Case Points 16, 44

W

Web Object Points 16, 50

Web Objects 50

ABOUT AUTHOR

John T Mesia Dhas received his Ph.D. in Computer Science and Engineering

from Vel Tech University, Chennai. He has 15 years of Experience in the field of

Education and Industry, currently he is working as an Associate Professor in

Computer Science and Engineering Department of Audisankara College of

Engineering and Technology, Gudur, Andhra Pradesh under Jawaharlal Nehru

Technological University Anantapuramu.

He is also doing researches in Software Engineering and Data Analytics

fields. He has published more than 14 research papers in conferences and

Journals. He is one of the Rashtrapathi Scout Award winners of Bharath Scouts

and Guides.

Title: Modern Metrics (MM): The Functional Size Estimator for

 Modern Software

Author: Dr. John T Mesia Dhas M.E., M.B.A., Ph.D.

Publisher: Self

ISBN: 978-93-5408-510-9

Price: ₹. 450/-

Address: No-1, MGR Street, Charles Nagar, Pattabiram

Chennai – 600072

India

Email: jtmdhasres@gmail.com

mailto:jtmdhasres@gmail.com

